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A b s t r a c t: In this paper, we present the dynamic modelling of two differential wheeled mobile robot, and 

also propose an easily implementable control strategy, for stabilizing the nonlinear and nonholonomic WMR system 

around the desired final posture. The asymptotic stability is approached by using two PI controllers. The dynamic 

model of WMR is used in the simulation environment of Matlab/Simulink, for testing the proposed stabilizing control 

strategy. The validity of control strategy is verified by the simulation results. 
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ДИНАМИЧКО МОДЕЛИРАЊЕ И КОНТРОЛА НА ПРИБЛИЖУВАЊЕТО КОН АСИМПТОТСКАТА  

СТАБИЛНОСТ НА МОБИЛЕН РОБОТ СО ДВЕ ДИФЕРЕНЦИЈАЛНИ ТРКАЛА 

А п с т р а к т: Во овој труд е претставено динамичко моделирање на мобилен робот со две диференцијални 

тркала и предложена е стратегија за контрола која може лесно да се имплементира за стабилизирање на 

нелинеарниот и нехолономичен систем на мобилен робот со тркала околу посакуваната крајна положба. 

Приближувањето кон асимптотската стабилност е изведено со два ПИ контролера. Динамичниот модел на 

мобилниот робот со тркала е искористен во симулациската околина на Matlab/Simulink за тестирање на 
предложената стратегија за контрола на стабилизацијата. Валидноста на стратегијата е верификувана со 

резултатите од симулацијата. 

Клучни зборови: мобилен робот со тркала; динамичко моделирање; нехолономични роботи;  

контрола на стабилизација; линеарен контролер 

1. INTRODUCTION 

Nowadays, the complexity and hazardous of 

working process and working environment in 

many fields have been increased. Consequently, as 

a result, the interest of manipulation and mobile 

robots application have been exponentially increas-

ed last few years as well (for further details consult 

[1], [2]). We may find an application of mobile 

robot in fields like mining, military, medicine, 

aerospace, industry, under water, etc., which requi-

re high accuracy, responsibility, and reliability. 

Therefore, wheeled mobile robots as a particular 

category of mobile robot are widely studied during 

the last decade, because of their simplicity and ap-

plicability. Wheeled mobile robots (WMR) are 

wheeled vehicles or platforms which are supposed 

to navigate from the initial point toward the desired 

or final point in an autonomous manner. 

The mobile robot has visual, proximity, posi-

tioning and object detection capabilities [3]. 

The performance of the WMR depends on 

many factors, like types of sensors and actuators, 
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their sensitivities and limitations, but mainly it de-

pends on the robustness of the designed controller. 

Controllers should be fast responsive and immune 

to the disturbances and parameter variations. 

There are many research papers focused on 

designing the control of a wheeled mobile robot. 

Depending on the configuration of the robot, many 

of them have proposed a controller which track the 

desired trajectory in the most effective way in 2D 

space [4]–[6]. Mostly include the kinematic model 

of WMR, while very few include dynamic model 

due to the complexity of the model and high non-

linearity degree. 

However, because of the center-of-gravity 

(COG) shifts and load changes caused by large 

loads and the serious nonlinear friction at the high 

speed, the accuracy of the path-tracking decreases 

and the robots stray from the predefined path, 

which clearly increases the danger of hitting ob-

stacles. Therefore, motion control is one of the 

most fundamental topics for mobile robots [7]. 

The navigation problem of mobile robots 

could be separated into four basic problems: 

1. Obstacle avoidance, 

2. Autonomous trajectory generation (path 

planning),  

3. Trajectory tracking, 

4. Point stabilization. 

All the afore mentioned navigation problems 

ought to use localization sensors system. In [8] 

authors presented the impact of using the dead rec-

koning sensors on the improvement of positioning 

accuracy of GPS and DGPS in application of land 

vehicles. The road construction vehicles, farm ve-

hicles and mining vehicles require accuracy of the 

order of a few centimetres. Hence, carrier phase 

differential GPS (CP-DGPS) technology provides 

such requirement. In [9] a nonlinear velocity inde-

pendent control law has been designed for the farm 

tractor (relies upon the kinematic model) to per-

form both curved paths and straight lines following 

by using a CP-DGPS sensor. The GPS is limited 

for the indoor mobile robots application with high 

accuracy requirements. Therefore, the indoor GPS 

system with fix beacons could be used. 

In the following text we group the cited pa-

pers by the separation, thus for the first and second 

navigation problem: in [10], authors elaborated a 

technique of constructing (generating) a feasible 

trajectory for WMR by assembling arcs of a simple 

curves, and extended the research by adding fuzzy 

logic control for obstacle avoidance. 

In [11] authors analyzed the controllability of 

the nonholonomic multibody robots with inequality 

constrained, and proposed an algorithm for genera-

ting path planning based on a bitmap discretisation. 

In [12] authors presented an algorithm for 

generating a trajectory by using simple arcs and 

straight lines. Furthermore, achieving obstacle 

avoidance through the composition of trajectories 

based on the set of configuration sub-goals that 

lead to collision-free motion. 

This paper is confined to the trajectory track-

ing and the point-stabilization for WMRs mov-

ing/operating in the 2D real-world space, within 

the respective separation of navigation problem. 

– Regarding the third navigation problem: In 

[13] a new kinematical control method, named 

Lyapunov-based Guidance Control (LGC), has 

been proposed for the trajectory tracking of non-

holonomic WMRs. Through the application of 

back stepping methodology, in [14] is proposed a 

control scheme for trajectory tracking for the con-

sidered augmented model including kinematics and 

dynamics of the mobile robot. 

In [6] authors proposed higher order sliding 

motion control based on the kinematic model for 

tracking the trajectory, the outcome results were 

satisfactory but it requires highly processing power 

compared to existing control methods. In [7] a di-

gital acceleration control method is proposed for 

the path-tracking of a wheeled mobile robot to deal 

with COG shifts and load changes. 

In [15] authors presented dynamic modelling 

of the WMR by using Lagrange formalism, and 

proposed two motion control laws for dynamic 

object tracking by using Lyapunov direct method 

and computed torque method. 

– Regarding the fourth navigation problem: In 

[16] the Point Stabilization of Mobile Robots is 

achieved by using Nonlinear Model Predictive 

Control. 

In [17] authors elaborated a method for pos-

ture stabilization of the wheeled mobile robot by 

using a hybrid automata-based controller. 

In [18] authors extended the nonholonomic 

integrated model by double integrating it, because 

it fails to capture the cases where both kinematic 

and dynamic of WMR are taken into account. 

Then, logic-based hybrid controller was proposed 

that yields global stability and convergence of the 

closed-loop system to an arbitrarily small neigh-

borhood of the origin. 
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Motivated by the scientific approaches which 

are used in aforementioned works, the problem of 

interest in this paper is to design a stabilizing cont-

rol about a desired posture. In such a way, that it 

will bring WMR to navigate from initial posture to 

the predefined desired posture, and solve the prob-

lem of asymptomatic stability. Besides the existing 

methods, the novelty of this paper is the simplicity 

of understanding, and easily implementable in the 

practical real slow-speed operating WMR. 

The organization of the paper is as follows. In 

Section 2 it is presented the kinematic modelling of 

the robot. Continuously, the elaboration of dynamic 

modelling of two differential wheeled mobile robot 

is given in Section 3. In Section 4 is presented the 

proposed control strategy for solving the problem 

of point stabilization, and it is followed by 

subsections of robot position control and robot ori-

entation control. The simulation results for the pro-

posed control system design are given in Section 5. 

The conclusion remarks are given is section 6. 

Remarks on the notation. Matrices are de-

noted by upper-case letters, and vectors and scalars 

are denoted by lower-case letters. 

2. KINEMATIC MODELLING 

The number of possible wheeled mobile ro-

bots realizations is almost infinite, depending on 

the number, type, implementation, geometric cha-

racteristics, and motorization of the wheels [19]. 

The mobile robot in this paper is driven by 

two independent differential wheels, and one free-

wheel or caster wheel for balancing the platform. 

The robot posture in Cartesian space x, y, θ 

will be described by the global reference coordina-

te frame {0}. 

 

Fig. 1. WMR in 2D Cartesian space 

Before proceeding with kinematic model 

some assumptions will be defined: 

1) Both motors produce the same torque; 

2) There is no friction on wheels or pure 

rolling without slipping; 

3) The distribution of mass is uniform; 

4) The robot will run on a flat surface, mean-

ing the potential energy is zero; 

5) There is no deformation on wheels or ter-

rain. 

The robot posture in Cartesian coordinate 

frame is specified by the generalized coordinate 

vectors qB = [xB, yB, θ]
T
 or qG = [xG, yG, θ]

T
. The 

point B is represented by xB and yB, which is the 

center of the wheel axis, while by xG and yG is re-

presented the center of gravity of the platform. The 

distance between the center of the wheel axis B 

and the center of gravity G of the platform is de-

noted by l, while heading of point G with respect 

to point B defined the orientation angle θ of the 

platform. 

 

Fig. 2. Generalized coordinate vectors qB , qG in R3 

Linear velocity of the right respectively left 

wheel could be expressed as a function of it is an-

gular velocity 
rr rθυ & =  and ,ll rθυ &=  where r is the 

radius of the driving wheel. 

Based on the condition of assumption 2, the 

linear and angular velocity at point B could be ex-

pressed by the following 

 
22

)( lrlr rr θθυυ
υ

&& +
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In matrix form: 
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The position of center of gravity G could be 

described by the global reference frame {0} in a 

vectorial form, in a complex plane: 

θ
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 θj
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If we differentiate the equation (4), the veloc-

ity relations could be found: 

 θθυυ j
BG elj &

r
+=  (5) 

 GBG yx && +=υ  (6) 

 
θ
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Through the substitution of (7) in (5), it is 

possible to express the velocity of point G in terms 

of the general linear υ and angular θ&  velocities: 

 θθθ θυθυυ jjj
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r
&

r
+=+=  (8) 

The velocity of point G could be expressed in 

term of the real and imaginary part, by approach-

ing the substitution of (6) in (8): 
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Wheeled mobile platforms are subject to non-

integrable kinematic constraints, known as nonho-

lonomic constraints (17). The nonholonomic cons-

traint could be defined by eliminating the para-

meter  from equation (9):  

 0sincos =−− ωθθ lxy GG
&&  (10) 

From equation (10) for θ = 0 the velocity in y 

direction is zero, 0=Gy& , while for πθ 2=  the velo-

city in  direction is also zero, 0=Gx& . This proves 

that as long as the assumption 2 holds, the nonho-

lonomic WMR could only move in direction 

perpendicular to the wheels axis. 

The definition of relationship between velo-

city of generalized coordinate vector Gq&  as an out-

put and controlled input of linear υ and angular ω 

velocities is given by the following matrix: 
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Through the application of equation (3) in 

(11), it is presented the relationship between the 

velocity of generalized coordinate vector Gq&  and 

the controlled angular velocities of right respecti-

vely left wheel: 
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Now equation (12) represents the kinematic 

model of the WMR in implicit form. The explicit 

form of a kinematic model of WMR is given by the 

equation (13).  
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Since at the output of the system the Degree 

of Freedom (DoF) which need to be controlled 

[ ]θ&&& ,, GG yx  is three, and at the input of the system 

the level of controllable DoF is two [ ]lr θθ && , , we 

confirm that the system (13) is nonholonomic. A 

system is nonholonomic when the controllable 

degree is less than the total degree which needs to 

be controlled, otherwise, the system is holonomic. 

According to remarks (page 187) of [20], 

nonholonomic systems do not satisfy Brockett 

condition. Therefore, by using continuous control 

laws, it is impossible to arrive smooth asymptoma-

tic stability at the desired point. However, approxi-

mated asymptotic stability region could be achie-

ved, (see the last paragraphs of Section 4). 

3. DYNAMIC MODELLING 

Let's assume that both wheels will be rotated 

with the same angular velocity, but opposite direc-

tion of rotation, thus robot will rotate around its 

center of wheel axis (point B), as a result dynamic 
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torque would act, and the point G will pass a circle 

with radius . Therefore, robot on the way to the 

final position and orientation, will create a trajecto-

ry by moving within this circle, see Figure 3. 

When the robot gets a curved road, at the center of 

gravity acts resultant acceleration, which could be 

expressed as: 

 corrdR aaaa
rrrr

++=  (14) 

denoting by da
r

 – the displacement acceleration, 

ra
r

 – the relative acceleration and cora
r

 – Coriolis 

acceleration. The displacement and relative accele-

ration can be separated into their normal and tan-

gential components. 

 corrtrndtdnR aaaaaa
rrrrrr

++++=  (15) 

 

Fig. 3. Radial and tangential acceleration components 

Since the WMR is nonholonomic it means 

that robot do not make displacement perpendicular 

to the wheel axis, hence .0=dta
r

 Considering that 

distance l doesn't change is constant, means that 

dna
r

 is same for point B and point G.  

The acceleration of the center of gravity G 

could be found by the derivation of equation (8) 

 θθ θυθθυ jj
G eljela )()( 2 &&&& ++−= . (16) 

The first component is the radial component, 

while the second component is the tangential com-

ponent. 

For the simplicity of understanding the equa-

tion (16), refer to the Figure 3. The correlation bet-

ween (15) and (16) might be presented as: 

 θθ j
corrt

j
rndnG eaajeaaa )()( ++−= . (17) 

The forward movement is produced by the 

dynamic force Fd  and the rotational motion is pro-

duced by the dynamic torque τd. The magnitude of 

these forces are given by the following equation:  
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where: m is the total mass of the platform without 

wheels, Ig is the moment of inertia calculated for 

rotation around the center of mass. The dynamic 

force Fd and dynamic torque of the robot τd are 

generated by the dynamic driven torque of the right 

τmr and left τmi motors: 
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The dynamic model of WMR is represented 

in matrix form by merging the equations (18) and 

(19): 

 τυυ BCM =+ )(&  (20) 

where: 
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The matrix M represents a positive definite 

inertial matrix, matrix C represents Coriolis and 

centrifugal matrix, B represents the input transfor-

mation matrix, [ ]Tdldr τττ ,=  and [ ]Tωυυ &&& ,=  repre-

sent vectors of controlled input dynamic torques 

and controlled output accelerations. 

The dynamic model (20) is based on the coor-

dinates of the WMR platform, for better modelling 

the physical system of WMR, the dynamic model 

should be extended including the dynamic models 

of actuating motors. The equation of motion could 

be written as: 
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denoting by: Iwm  – the inertia of each wheel plus 

the inertia of motor including the rotor inertia, τmr, 

τml  – the torque exerted from right, respectively left 

motor, and τfr, τfl – the friction torque from right 

respectively left motor. 

The dynamic model of WMR including the 

dynamic of wheels plus motors could be defined 

through the substitution of equation (22) in (20) as: 

 mfwm BBCM ττυυ =++ )(&  (23) 

where: 
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The matrix Mwm indicate the reduced form of 

positive definite Inertia matrix, while τm and τf 

represent vectors of generated motor torque and 

friction torque respectively. The dynamic model-

ling could be derived also by using Lagrange dyna-

mic equation of motion. The dynamical modelling 

of two nonholonomic WMR using Lagrange for-

malism could be found in [21]. 

4. CONTROL STRATEGY 

The control problem of robot stabilization 

could be separated in two individual control prob-

lems: robot positioning control and robot orienta-

tion control. The RPC must provide a control in 

such a way that robot will achieve the desired posi-

tion (xd, yd), regardless the orientation of the robot. 

The ROC besides achieving the desired position 

must assure achieving desired orientation of the 

robot (xd, yd, θd). 

The intention of control engineering is to find 

a feedback stabilizable controller, such that, the 

equilibrium point of the closed-loop system is 

asymptotically stable. Since the system is nonline-

ar and non-holonomic, it means that there do not 

exist smooth time invariant state feedback contro-

ller, which renders the equilibrium point of a 

closed loop system being asymptotically stable. 

A) Robot position control 

The control problem is to find a solution to 

bring the WMR to the final position regardless the 

orientation. Since the Cartesian coordinates of the 

actual position of the robot are known from the 

GPS sensor, and coordinates of the final position 

are known to us from the task request (xd, yd), then 

it is possible through simple equations to calculate 

the distance to a final position. The illustration of 

the problem is presented in Figure 4, denoted by ∆r 

– the distance to the final position, α – the angle 

between the final position and Cartesian system, 

and θ – the heading angle of the robot. 

 
Fig. 4. Geometric solution of RPC  

In order to solve the problem, assume a point 

D somewhere in the line of robot heading direction 

with distance ∆s, such that, it will be the closest 

point from the final point. The angle to the final 

position from the heading orientation of the robot 

is defined as φ. In other words, it is the error bet-

ween the assumed point D and the final point 

(desired position), defined as: 

 
r

s

∆

∆
=φcos  (25) 

The desired point (xd, yd) will be achieved if 

system control is designed, such that renders the 

∆s → 0, ϕ → 0. Therefore, the positioning control 

problem will be solved by implementing such 

control strategy that provides such convergences.  

The distance error respectively angular error 

are denoted by eS, eφ, and defined as:  
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Through the implementation of above equati-

ons, in Figure 5, is presented the Block scheme of 

proposed control strategy for robot positioning. 

The dynamic model is related with variable s 

and θ, by the following substitution 

 TT
s ],[],[ θωυυ &&== . 

 

The relation between the displacement of 

right and left wheel and the control signal s and θ, 

could be expressed by taking the inverse of equa-

tion (3), integrating it on both sides of expression 

and neglecting the integration constants. 
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Equation (28) is used in the simulation envi-

ronment to generate the reference inputs (outputs) 

on the wheels actuator control systems, when the 

vector [s, θ]T is substituted by the control vector 

[us, ug]
T
. 

 
Fig. 5. Block schema of RPC Structure 

B) Robot orientation control 

The robot is not supposed to move straight to 

the final position, therefore, the control strategy 

design will take in consideration the orientation of 

the WMR at the final position. 

The difference between the desired orientati-

on angle dθ  and the angle to the final position α is 

defined by β, as αθβ −= d . In order to solve the 

problem of the desired final orientation of the ro-

bot, assume a reference point R, as we would have 

rotated a final point for angle β in a clockwise 

direction, related to point B with radius ∆r, see 

Figure 6. 

  

Fig. 6. Geometric solution of RPC and ROC 
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As the robot moves forward closer to the final 

posture, the desired orientation angle dθ  and final 

posture angle α will keep increasing, while β dec-

reases. Continuously, as β decreases the reference 

point R will attempt to approach the final point 

with desired orientation. 

Now, the angle between the heading direction 

of the robot and the reference point is denoted by γ, 

which could be expressed as 

.2 θθαβγ φ −−=−= de  

The distance error respectively the angular 

error to the final orientation are denoted by es, eθ 

as: 

 
γ

θθαγ

θ =

−−⋅∆=⋅∆=∆=

e

rrse ds )2cos()cos(
 

By applying the above formulas of this paper, 

in Figure 7 is presented the block scheme of pro-

posed control strategy for position and orientation 

of WMR. 

 

Fig. 7. Block scheme of RPC and ROC structures 

In order to encapsulate the idea of robot stabi-

lization about the desired posture, it could be sum-

marized that: RPC attempts to move the robot tow-

ard point D, but simultaneously as t → ∞. γ → 0 

point D approaches reference point R. While ROC 

as t → ∞. β → 0 will try to approach continuously 

reference point R toward final posture. The accura-

cy and sensitivity of sensor used for measuring the 

position of the platform, determines the circular re-

gion from the final point with a radius ε. When the 

mobile robot gets within this circular region 

,ε≤∆r  then it is approximated that both linear 

error es and angular error eθ are zero. Therefore, at 

this point the approximated asymptotic stability 

problem is accomplished based on the geometric 

approach, wherein the proposed control strategy is 

subjected too. 

Often in text books, approximated asymptotic 

stability region is referred as asymptotic stability, 

so we do in this paper. 

5. SIMULATION RESULTS 

The simulation results are obtained by using 

Matlab/SIMULINK. Since it is considered slow-

speed operating two-wheeled mobile robot, any 

linear controller could be used for the proposed 

control strategy for stabilization of the robot about 

a desired posture. In this paper, two PI controllers 

are used, one for controlling the distance error es 

and the other for controlling the angular error eθ. 

 


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
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The performance of PI controllers could be 

adjust by tuning the gain parameters. Equation (23) 

is used to model Robot Dynamics block. The phy-

sical parameters taken to model the robot in the si-

mulation are given: m = 25 kg, r = 0.15 m, L = 0.3 

m, l = 0.35 m, Ig = 0.25 kg·m2, Im = 0.01 kg·m2. 

The outer part and the heading shape of the virtual 

platform of a wheeled mobile robot is illustrated in 

Figure 8. 

 

Fig. 8. Virtual platform of WMR 

Various robot paths starting from the initial 

posture [0, 0, 0
o
] toward the final point [20. 10] 

with different desired orientation angles θd are pre-

sented in Figure 9. Where paths with positive desi-

red orientation angle θd > 0 are presented with dash 

lines, while with solid lines are presented the nega-

tive ones. When the desired orientation angle is 

large, the robot needs to take a longer path. 

 

Fig. 9. Robot paths with various final desired orientation angle 

In order to evaluate the efficiency of the 

proposed control strategy, in Figure 10 we have 

taken a scenario in such a way that robot starts in 

various initial points and goes to center point 

[0, 0]. For initial points, x ≥ 0
+
 their final desired 

orientation angle is taken 180
o
, while for x ≤ 0– the 

final desired orientation angle is taken 0o. 

 

Fig. 10. Robot paths from various initial posture 

In the following figures, according to a parti-

cular simulation of the robot path, starting from 

initial posture [0, 0, 0
o
] and going toward final 

posture [20, 10, 0
o
], are presented the convergen-

ces of angular and distance errors of RPC and 

ROC. 

 

Fig. 11. Angular and distance errors of RPC and ROC  

for particular robot path 

Furthermore, the angular velocity of a plat-

form and the angular velocities of the left respecti-

vely right wheel are presented in Figure 12, but for 

the sake of a better illustration lθ&  and rθ&  are 

multiplied by a factor 0.1.  
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Fig. 12. Angular velocity and angular velocities of left and 

right wheel 

The simulation results prove that an asympto-

tic stability could be achieved.  

6. CONCLUSION 

Even thought, this WMR system is nonlinear 

and non-holonomic, the proposed control strategy 

assures asymptotic stability about the desired pos-

ture. The simulation has shown very satisfactory 

results and proved that as t → ∞. an asymptotic 

stability could be achieved. Furthermore, a robot 

needs to take longer path when the desired final 

orientation angle is large, this is not an advantage 

but still it is admissible for different practical 

applications. 

The proposed control strategy is implement-

able and only requires localization of the robot, the 

performance of the WMR could be adjusted by 

tuning the gain parameters of PI controllers. It is 

applicable only for the configuration of two diffe-

rential wheeled mobile robot. 

Future works will be focused on implement-

ing the proposed control strategy in the real WMR, 

compare and evaluate the performance in the real 

situation. 
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