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A bstract: In this paper, we present the dynamic modelling of two differential wheeled mobile robot, and
also propose an easily implementable control strategy, for stabilizing the nonlinear and nonholonomic WMR system
around the desired final posture. The asymptotic stability is approached by using two PI controllers. The dynamic
model of WMR is used in the simulation environment of Matlab/Simulink, for testing the proposed stabilizing control
strategy. The validity of control strategy is verified by the simulation results.
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JUHAMMAWYKO MOJEJIMPAILE 1 KOHTPOJIA HA ITPUBJIM)KYBAIBETO KOH ACUMIITOTCKATA
CTABHUJIHOCT HA MOBHMJIEH POBOT CO ABE JU®EPEHIUJAJIHA TPKAJIA

AmncrtpaxkT: Bo 0B0j Tpyd € MPETCTaBEHO AUHAMMYKO MOJENHUPAame Ha MOOMIEH poOOT cO ABe AU(EpEeHIHjaTHU
TpKaja W NpeUIoKeHa € CTpaTerja 3a KOHTPOJIa Koja MOXKE JIECHO Jla Ce MMIUIEMEHTHpa 3a CTaOMIM3Upame Ha
HEJMHEapHUOT M HEXOIOHOMUYCH CHCTEM Ha MOOMICH pOOOT CO TpKala OKONy IIOCAKyBaHATa KpajHa IOJIOXKOa.
[pubnmxyBameTo KOH aCHMITOTCKAaTa CTAaOMIIHOCT € u3BeneHo co asa 1M konTtposepa. [MHAMHYHHOT MOJEN Ha
MOOMJIHHOT pOOOT CO TpKajla € MCKOPHCTEH BO CHUMyJanuckara okoimHa Ha Matlab/Simulink 3a Tectupame Ha
MpeAoKeHaTa CTpaTerrja 3a KOHTpOoJa Ha crabuim3aiujaTa. BamumHocTta Ha crpaTtervjata € BepuHKyBaHa CO

PE3yITATUTE O CI/IMyJ'IaI_II/Ij aTa.

Kunyunu 360poBu: MoOuieH poGOT Co TpKalia; AMHAMUYKO MOJEINPae; HEXOJIOHOMUYHU POOOTH;
KOHTpOJIa Ha CTa0MIM3alH]ja; IHHEAPEH KOHTPOJIEP

1. INTRODUCTION

Nowadays, the complexity and hazardous of
working process and working environment in
many fields have been increased. Consequently, as
a result, the interest of manipulation and mobile
robots application have been exponentially increas-
ed last few years as well (for further details consult
[1], [2]). We may find an application of mobile
robot in fields like mining, military, medicine,
aerospace, industry, under water, etc., which requi-
re high accuracy, responsibility, and reliability.

Therefore, wheeled mobile robots as a particular
category of mobile robot are widely studied during
the last decade, because of their simplicity and ap-
plicability. Wheeled mobile robots (WMR) are
wheeled vehicles or platforms which are supposed
to navigate from the initial point toward the desired
or final point in an autonomous manner.

The mobile robot has visual, proximity, posi-
tioning and object detection capabilities [3].

The performance of the WMR depends on
many factors, like types of sensors and actuators,
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their sensitivities and limitations, but mainly it de-
pends on the robustness of the designed controller.
Controllers should be fast responsive and immune
to the disturbances and parameter variations.

There are many research papers focused on
designing the control of a wheeled mobile robot.
Depending on the configuration of the robot, many
of them have proposed a controller which track the
desired trajectory in the most effective way in 2D
space [4]-[6]. Mostly include the kinematic model
of WMR, while very few include dynamic model
due to the complexity of the model and high non-
linearity degree.

However, because of the center-of-gravity
(COG) shifts and load changes caused by large
loads and the serious nonlinear friction at the high
speed, the accuracy of the path-tracking decreases
and the robots stray from the predefined path,
which clearly increases the danger of hitting ob-
stacles. Therefore, motion control is one of the
most fundamental topics for mobile robots [7].

The navigation problem of mobile robots
could be separated into four basic problems:

1. Obstacle avoidance,

2. Autonomous trajectory generation (path
planning),

3. Trajectory tracking,

4. Point stabilization.

All the afore mentioned navigation problems
ought to use localization sensors system. In [§]
authors presented the impact of using the dead rec-
koning sensors on the improvement of positioning
accuracy of GPS and DGPS in application of land
vehicles. The road construction vehicles, farm ve-
hicles and mining vehicles require accuracy of the
order of a few centimetres. Hence, carrier phase
differential GPS (CP-DGPS) technology provides
such requirement. In [9] a nonlinear velocity inde-
pendent control law has been designed for the farm
tractor (relies upon the kinematic model) to per-
form both curved paths and straight lines following
by using a CP-DGPS sensor. The GPS is limited
for the indoor mobile robots application with high
accuracy requirements. Therefore, the indoor GPS
system with fix beacons could be used.

In the following text we group the cited pa-
pers by the separation, thus for the first and second
navigation problem: in [10], authors elaborated a
technique of constructing (generating) a feasible
trajectory for WMR by assembling arcs of a simple
curves, and extended the research by adding fuzzy
logic control for obstacle avoidance.

In [11] authors analyzed the controllability of
the nonholonomic multibody robots with inequality
constrained, and proposed an algorithm for genera-
ting path planning based on a bitmap discretisation.

In [12] authors presented an algorithm for
generating a trajectory by using simple arcs and
straight lines. Furthermore, achieving obstacle
avoidance through the composition of trajectories
based on the set of configuration sub-goals that
lead to collision-free motion.

This paper is confined to the trajectory track-
ing and the point-stabilization for WMRs mov-
ing/operating in the 2D real-world space, within
the respective separation of navigation problem.

— Regarding the third navigation problem: In
[13] a new kinematical control method, named
Lyapunov-based Guidance Control (LGC), has
been proposed for the trajectory tracking of non-
holonomic WMRs. Through the application of
back stepping methodology, in [14] is proposed a
control scheme for trajectory tracking for the con-
sidered augmented model including kinematics and
dynamics of the mobile robot.

In [6] authors proposed higher order sliding
motion control based on the kinematic model for
tracking the trajectory, the outcome results were
satisfactory but it requires highly processing power
compared to existing control methods. In [7] a di-
gital acceleration control method is proposed for
the path-tracking of a wheeled mobile robot to deal
with COG shifts and load changes.

In [15] authors presented dynamic modelling
of the WMR by using Lagrange formalism, and
proposed two motion control laws for dynamic
object tracking by using Lyapunov direct method
and computed torque method.

— Regarding the fourth navigation problem: In
[16] the Point Stabilization of Mobile Robots is
achieved by using Nonlinear Model Predictive
Control.

In [17] authors elaborated a method for pos-
ture stabilization of the wheeled mobile robot by
using a hybrid automata-based controller.

In [18] authors extended the nonholonomic
integrated model by double integrating it, because
it fails to capture the cases where both kinematic
and dynamic of WMR are taken into account.
Then, logic-based hybrid controller was proposed
that yields global stability and convergence of the
closed-loop system to an arbitrarily small neigh-
borhood of the origin.
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Motivated by the scientific approaches which
are used in aforementioned works, the problem of
interest in this paper is to design a stabilizing cont-
rol about a desired posture. In such a way, that it
will bring WMR to navigate from initial posture to
the predefined desired posture, and solve the prob-
lem of asymptomatic stability. Besides the existing
methods, the novelty of this paper is the simplicity
of understanding, and easily implementable in the
practical real slow-speed operating WMR.

The organization of the paper is as follows. In
Section 2 it is presented the kinematic modelling of
the robot. Continuously, the elaboration of dynamic
modelling of two differential wheeled mobile robot
is given in Section 3. In Section 4 is presented the
proposed control strategy for solving the problem
of point stabilization, and it is followed by
subsections of robot position control and robot ori-
entation control. The simulation results for the pro-
posed control system design are given in Section 5.
The conclusion remarks are given is section 6.

Remarks on the notation. Matrices are de-
noted by upper-case letters, and vectors and scalars
are denoted by lower-case letters.

2. KINEMATIC MODELLING

The number of possible wheeled mobile ro-
bots realizations is almost infinite, depending on
the number, type, implementation, geometric cha-
racteristics, and motorization of the wheels [19].

The mobile robot in this paper is driven by
two independent differential wheels, and one free-
wheel or caster wheel for balancing the platform.

The robot posture in Cartesian space x, y, 0
will be described by the global reference coordina-
te frame {0}.

{0} x

Fig. 1. WMR in 2D Cartesian space
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Before proceeding with kinematic model
some assumptions will be defined:

1) Both motors produce the same torque;

2) There is no friction on wheels or pure
rolling without slipping;

3) The distribution of mass is uniform;

4) The robot will run on a flat surface, mean-
ing the potential energy is zero;

5) There is no deformation on wheels or ter-
rain.

The robot posture in Cartesian coordinate
frame is specified by the generalized coordinate
vectors qg = [xz, Vs, 01" or q6 = [x6, Yo, 0]". The
point B is represented by xp and yz, which is the
center of the wheel axis, while by x; and yg is re-
presented the center of gravity of the platform. The
distance between the center of the wheel axis B
and the center of gravity G of the platform is de-
noted by 1, while heading of point G with respect
to point B defined the orientation angle 0 of the
platform.

{3 xp %o

Fig. 2. Generalized coordinate vectors gz , g in R’

Linear velocity of the right respectively left
wheel could be expressed as a function of it is an-

gular velocity v, = rg, and v, = r6,, where r is the
radius of the driving wheel.

Based on the condition of assumption 2, the
linear and angular velocity at point B could be ex-
pressed by the following

v @, +v) _ r€,+r€,’ 1

2 2

_ v, -v) _ ré,—ré, . 2)
2L 2L

@
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In matrix form:

r . .
vl| 2 ol=p|%|
o] |~ _" |6 6,
2L

2L

N |~

The position of center of gravity G could be
described by the global reference frame {0} in a
vectorial form, in a complex plane:

X,+J v, =(x,+ ] y,)+1(cosf+ j sin) =

=(xb+j yb)+lej9
OG =0B+BG =0B +1e'.. (4)

If we differentiate the equation (4), the veloc-
ity relations could be found:

Vg =0y + /160" (5)
Vg =5+ Vo (6)

- . . i0

Vg =Xp+ Yy =ve’ (7N

Through the substitution of (7) in (5), it is
possible to express the velocity of point G in terms

of the general linear v and angular 6 velocities:
Vo =ve’? + j16e7 =(v+ jI10)e”’ (8)

The velocity of point G could be expressed in
term of the real and imaginary part, by approach-
ing the substitution of (6) in (8):

Xg =vcos@—lwsind

. . . )
Yo =0sin@+lwcos b

Wheeled mobile platforms are subject to non-
integrable kinematic constraints, known as nonho-
lonomic constraints (17). The nonholonomic cons-
traint could be defined by eliminating the para-
meter ¥ from equation (9):

Vg cos@—x;sinf—Ilw=0 (10)

From equation (10) for 6 = 0 the velocity in y
direction is zero, y; =0, while for 8 =’27 the velo-
city in x direction is also zero, x; =0. This proves
that as long as the assumption 2 holds, the nonho-

lonomic WMR could only move in direction
perpendicular to the wheels axis.

The definition of relationship between velo-
city of generalized coordinate vector ¢, as an out-

put and controlled input of linear v and angular @
velocities is given by the following matrix:

Xg cos@ I[sin@ v v

Ve |=|sin@ Ilcosé {4=G(6)[ } (11)
. [0

12 0 1

Through the application of equation (3) in
(11), it is presented the relationship between the
velocity of generalized coordinate vector ¢, and
the controlled angular velocities of right respecti-
vely left wheel:

6
qczcxayp{é}. (12)

1

Now equation (12) represents the kinematic
model of the WMR in implicit form. The explicit
form of a kinematic model of WMR is given by the
equation (13).

Xg Zcos@—-lsin€@  Scos@+1sinf .
Yo |=|£sin@+F-Icos@ Lsinf—-lcosd {;}
] r r 1

0 72 72

(13)

Since at the output of the system the Degree
of Freedom (DoF) which need to be controlled

[)'CG, yc,é] is three, and at the input of the system

the level of controllable DoF is two [ér,él], we

confirm that the system (13) is nonholonomic. A
system is nonholonomic when the controllable
degree is less than the total degree which needs to
be controlled, otherwise, the system is holonomic.

According to remarks (page 187) of [20],
nonholonomic systems do not satisfy Brockett
condition. Therefore, by using continuous control
laws, it is impossible to arrive smooth asymptoma-
tic stability at the desired point. However, approxi-
mated asymptotic stability region could be achie-
ved, (see the last paragraphs of Section 4).

3. DYNAMIC MODELLING

Let's assume that both wheels will be rotated
with the same angular velocity, but opposite direc-
tion of rotation, thus robot will rotate around its
center of wheel axis (point B), as a result dynamic

J. Electr. Eng. Inf. Technol. 1, 1-2, 25-35 (2016)
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torque would act, and the point G will pass a circle
with radius I. Therefore, robot on the way to the
final position and orientation, will create a trajecto-
ry by moving within this circle, see Figure 3.
When the robot gets a curved road, at the center of
gravity acts resultant acceleration, which could be
expressed as:

dp=ad,+ad,+ad,, (14)

denoting by a, — the displacement acceleration,
a, — the relative acceleration and a,, — Coriolis

acceleration. The displacement and relative accele-
ration can be separated into their normal and tan-
gential components.

aR = adn + aa,'t + am + arl‘ + acor (15)
¥
YR
)
_— R
drt
é‘\ Acor,
. AV
i)
78 ) |
E:S
[
{0} Xp e

Fig. 3. Radial and tangential acceleration components

Since the WMR is nonholonomic it means
that robot do not make displacement perpendicular
to the wheel axis, hence a, =0. Considering that
distance ! doesn't change is constant, means that
da,, is same for point B and point G.

The acceleration of the center of gravity G
could be found by the derivation of equation (8)

a; =(W—-16%)e’ + j(16+v0)e’ . (16)

The first component is the radial component,
while the second component is the tangential com-
ponent.

For the simplicity of understanding the equa-
tion (16), refer to the Figure 3. The correlation bet-
ween (15) and (16) might be presented as:

Ciiuc. Enexiupoiuexn. Ung. Texnon. 1, 1-2, 25-35 (2016)

a; =(a,, —a,)e’® + j(a, +a,)e’. (17)

The forward movement is produced by the
dynamic force F; and the rotational motion is pro-
duced by the dynamic torque 7. The magnitude of

these forces are given by the following equation:

F,=m-a, =m-(0—16%)
‘ s . (18)
z’d=(lg+ml )0 + mlvé

where: m is the total mass of the platform without
wheels, I, is the moment of inertia calculated for
rotation around the center of mass. The dynamic
force F; and dynamic torque of the robot 7; are
generated by the dynamic driven torque of the right
T, and left 7,; motors:

Fd — (Tmr + Tml)
r
(19)
T.,.—7T
Td =L( mr mr)
r

The dynamic model of WMR is represented
in matrix form by merging the equations (18) and
(19):

Mv+C(v)=Br (20)

where:

N2
C(v) {_ mio } 1)

The matrix M represents a positive definite
inertial matrix, matrix C represents Coriolis and
centrifugal matrix, B represents the input transfor-

mation matrix, 7=[z,,,7, | and v =[0,&| repre-
sent vectors of controlled input dynamic torques
and controlled output accelerations.

The dynamic model (20) is based on the coor-
dinates of the WMR platform, for better modelling
the physical system of WMR, the dynamic model
should be extended including the dynamic models
of actuating motors. The equation of motion could
be written as:
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wm r mr r

1,0 +7, =71, T, )

wm

1,0 +T,=17,,-7,

denoting by: 1,,, — the inertia of each wheel plus
the inertia of motor including the rotor inertia, 7,,
7.1 — the torque exerted from right, respectively left
motor, and 7, 7; — the friction torque from right
respectively left motor.

The dynamic model of WMR including the
dynamic of wheels plus motors could be defined
through the substitution of equation (22) in (20) as:

M,,0+C()+Bt, =BT, (23)

wm

where:

(24)

The matrix M,,, indicate the reduced form of
positive definite Inertia matrix, while 7, and 7
represent vectors of generated motor torque and
friction torque respectively. The dynamic model-
ling could be derived also by using Lagrange dyna-
mic equation of motion. The dynamical modelling
of two nonholonomic WMR using Lagrange for-
malism could be found in [21].

4. CONTROL STRATEGY

The control problem of robot stabilization
could be separated in two individual control prob-
lems: robot positioning control and robot orienta-
tion control. The RPC must provide a control in
such a way that robot will achieve the desired posi-
tion (x4, y4), regardless the orientation of the robot.
The ROC besides achieving the desired position
must assure achieving desired orientation of the
robot (x4, Y4, 6)).

The intention of control engineering is to find
a feedback stabilizable controller, such that, the
equilibrium point of the closed-loop system is
asymptotically stable. Since the system is nonline-

ar and non-holonomic, it means that there do not
exist smooth time invariant state feedback contro-
ller, which renders the equilibrium point of a
closed loop system being asymptotically stable.

A) Robot position control

The control problem is to find a solution to
bring the WMR to the final position regardless the
orientation. Since the Cartesian coordinates of the
actual position of the robot are known from the
GPS sensor, and coordinates of the final position
are known to us from the task request (x,, y;), then
it is possible through simple equations to calculate
the distance to a final position. The illustration of
the problem is presented in Figure 4, denoted by Ar
— the distance to the final position, & — the angle
between the final position and Cartesian system,
and @- the heading angle of the robot.

Fig. 4. Geometric solution of RPC

In order to solve the problem, assume a point
D somewhere in the line of robot heading direction
with distance As, such that, it will be the closest
point from the final point. The angle to the final
position from the heading orientation of the robot
is defined as ¢@. In other words, it is the error bet-
ween the assumed point D and the final point
(desired position), defined as:

As

cos@p=— (25)

Ar

The desired point (x,, y,) will be achieved if
system control is designed, such that renders the
As — 0, ¢ — 0. Therefore, the positioning control
problem will be solved by implementing such
control strategy that provides such convergences.

The distance error respectively angular error
are denoted by e, ey, and defined as:

J. Electr. Eng. Inf. Technol. 1, 1-2, 25-35 (2016)
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e, =As=Ar-cos¢ =
=y =)+ (3, = ¥)"-cosg = (26)

=J(Ax)? +(Ay)?-cos ¢

e, =¢=a—0=arctan(ul—0=

X; =X

= arctan(ﬂj =60
Ax

Through the implementation of above equati-
ons, in Figure 5, is presented the Block scheme of
proposed control strategy for robot positioning.

The dynamic model is related with variable s
and 6, by the following substitution

27)

v=[v, o =[s,0]" .

The relation between the displacement of
right and left wheel and the control signal s and 6,
could be expressed by taking the inverse of equa-
tion (3), integrating it on both sides of expression
and neglecting the integration constants.

Ol p = o) T )
6| 6| Uy _% —L 1] uy

Equation (28) is used in the simulation envi-
ronment to generate the reference inputs (outputs)
on the wheels actuator control systems, when the
vector [s, 8" is substituted by the control vector
[, )"

ul
Abs Compare  Stop Simulation
To Constant
i’ —
x_d ax dr ‘ » dr Controlled s
o phi angle
X de ay A|pna4>©—T—> phi ds M
c Desired point i e — »lerror_s u_s(t) > u_s(t) @
error generator Controller for dist v [
; ontroller for distance error
¥ desired Point D XY Graph
Error generator ror phi  u_tet) »lu et
|te—dl T - "= Angle Theta N -
Theta desired

Controller for angular errgr

Actual theta

Robot Dynamics
angle

/=

Controlled Phi

Fig. 5. Block schema of RPC Structure

B) Robot orientation control

The robot is not supposed to move straight to
the final position, therefore, the control strategy
design will take in consideration the orientation of
the WMR at the final position.

The difference between the desired orientati-
on angle €, and the angle to the final position «is
defined by f, as =6, —«. In order to solve the
problem of the desired final orientation of the ro-
bot, assume a reference point R, as we would have
rotated a final point for angle £ in a clockwise

direction, related to point B with radius Ar, see
Figure 6.

Ciiuc. Enexiupoiuexn. Ung. Texnon. 1, 1-2, 25-35 (2016)

Fig. 6. Geometric solution of RPC and ROC
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As the robot moves forward closer to the final
posture, the desired orientation angle &, and final

posture angle a will keep increasing, while £ dec-
reases. Continuously, as f decreases the reference
point R will attempt to approach the final point
with desired orientation.

Now, the angle between the heading direction
of the robot and the reference point is denoted by 7,
which could be expressed as

y=e,—~f=2a-6,-6.

The distance error respectively the angular
error to the final orientation are denoted by e;, eg
as:

e, =As=Ar-cos(y)=Ar-cos(Qa—6, - 0)
€ =Y
By applying the above formulas of this paper,

in Figure 7 is presented the block scheme of pro-

posed control strategy for position and orientation
of WMR.

==0.01

!
™

|ul

Abs Compare  stop Simulation
To Constant
’ ]
r
x_d = Controlled s
X desired dx dr s dr X
ds pleror s u_s(t) > u_s(t) >
y_d dy Alpha » Alpha ) [}
- Controller for distance error Y
Y desired Desired point Theta Desired XY Graph
error generator Gamma error_theta u_te(t) » u_te(t) —J
te_d » ] 1 U]
- Actual Theta RIEETTEE >
Theta desired IController for anaular errdr
Point D Robot Dynamics ctual tlheta
Error generator angle

—

»

L

Controlled Thet!

Fig. 7. Block scheme of RPC and ROC structures

In order to encapsulate the idea of robot stabi-
lization about the desired posture, it could be sum-
marized that: RPC attempts to move the robot tow-
ard point D, but simultaneously as ¢t — . ¥ — 0
point D approaches reference point R. While ROC
as t — o, #— 0 will try to approach continuously
reference point R toward final posture. The accura-
cy and sensitivity of sensor used for measuring the
position of the platform, determines the circular re-
gion from the final point with a radius & When the
mobile robot gets within this circular region
Ar<eg, then it is approximated that both linear
error e, and angular error ey are zero. Therefore, at
this point the approximated asymptotic stability
problem is accomplished based on the geometric
approach, wherein the proposed control strategy is
subjected too.

Often in text books, approximated asymptotic
stability region is referred as asymptotic stability,
so we do in this paper.

5. SIMULATION RESULTS

The simulation results are obtained by using
Matlab/SIMULINK. Since it is considered slow-
speed operating two-wheeled mobile robot, any
linear controller could be used for the proposed
control strategy for stabilization of the robot about
a desired posture. In this paper, two PI controllers
are used, one for controlling the distance error e,
and the other for controlling the angular error eg.

U (=K, -e,()+K, [ e (0,

] (29)
(=K 5 ep(t)+ Ky '[Oeg(t)dt,

J. Electr. Eng. Inf. Technol. 1, 1-2, 25-35 (2016)
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The performance of PI controllers could be
adjust by tuning the gain parameters. Equation (23)
is used to model Robot Dynamics block. The phy-
sical parameters taken to model the robot in the si-
mulation are given: m =25 kg, r =0.15m, L=0.3
m, [ = 0.35 m, I, = 0.25 kg-m?, I,, = 0.01 kg-m”.
The outer part and the heading shape of the virtual
platform of a wheeled mobile robot is illustrated in
Figure 8.

Fig. 8. Virtual platform of WMR

Various robot paths starting from the initial
posture [0, 0, 0°] toward the final point [20. 10]
with different desired orientation angles 6, are pre-
sented in Figure 9. Where paths with positive desi-
red orientation angle g, > 0 are presented with dash
lines, while with solid lines are presented the nega-
tive ones. When the desired orientation angle is
large, the robot needs to take a longer path.

Distance y[m]

0 2 4 6 8 10 12 14 16 18 20
Distance x [m]

Fig. 9. Robot paths with various final desired orientation angle

In order to evaluate the efficiency of the
proposed control strategy, in Figure 10 we have
taken a scenario in such a way that robot starts in
various 1initial points and goes to center point

Ciiuc. Enexiupoiuexn. Ung. Texnon. 1, 1-2,25-35 (2016)

[0, O]. For initial points, x > 0" their final desired
orientation angle is taken 180°, while for x <0 the
final desired orientation angle is taken 0°.

(0,10.0 (15,10,180)

(-15,10,30)

ok (15.0,180)
(-15,00)

Distance y[m]

=
=l
L=
S

"0, 10,180)
‘

-15 -10 -5 0 5 10 15
Distance x [m]

Fig. 10. Robot paths from various initial posture

In the following figures, according to a parti-
cular simulation of the robot path, starting from
initial posture [0, 0, 0°] and going toward final
posture [20, 10, 0°], are presented the convergen-
ces of angular and distance errors of RPC and
ROC.

@
S
T

N
o
T

N
=]

Angle [degree]
o

n
=]
T

S
=]

60 F

Time [s]

Fig. 11. Angular and distance errors of RPC and ROC
for particular robot path

Furthermore, the angular velocity of a plat-
form and the angular velocities of the left respecti-
vely right wheel are presented in Figure 12, but for

the sake of a better illustration 6, and 6, are
multiplied by a factor 0.1.
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Fig. 12. Angular velocity and angular velocities of left and
right wheel

The simulation results prove that an asympto-
tic stability could be achieved.

6. CONCLUSION

Even thought, this WMR system is nonlinear
and non-holonomic, the proposed control strategy
assures asymptotic stability about the desired pos-
ture. The simulation has shown very satisfactory
results and proved that as + — co. an asymptotic
stability could be achieved. Furthermore, a robot
needs to take longer path when the desired final
orientation angle is large, this is not an advantage
but still it is admissible for different practical
applications.

The proposed control strategy is implement-
able and only requires localization of the robot, the
performance of the WMR could be adjusted by
tuning the gain parameters of PI controllers. It is
applicable only for the configuration of two diffe-
rential wheeled mobile robot.

Future works will be focused on implement-
ing the proposed control strategy in the real WMR,
compare and evaluate the performance in the real
situation.
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