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A b s t r a c t: This study presents the use of Adaptive Neuro-Fuzzy Inference System (ANFIS) for classification of the 

EEG signals. The data consists of two types of EEG signals, i.e. epileptic patients during epilepsy and healthy patients 

when their eyes are open. The proposed algorithm has several steps. First, in order to remove the artefacts (filter the 

signals) we use band-pass Finite Impulse Response (FIR) filtering with the Hamming window. Feature extraction is 

made in the second step, using Discrete Wavelet Transform (DWT) and statistical analysis. In this way we reduce the 

dimensionality of the input data, lately used as input parameters in the ANFIS network. ANFIS model learns how to 

classify the EEG signal, through the standard hybrid learning algorithm. We use special form of ANFIS model, which 

depending on the number of inputs, splits the model into appropriate number of substructures (sub-ANFIS models). 

ANFIS model was evaluated in terms of training performance and classification accuracies. From the simulation results 

it was concluded that the proposed algorithm has good potentials in classifying the EEG signals. 

Key words: Adaptive Neuro-Fuzzy Inference System (ANFIS); fuzzy logic; wavelet transform;  

Finite Impulse Response (FIR) filter; electroencephalogram (EEG) signals 

ДЕТЕКЦИЈА НА ЕПИЛЕПСИЈА СО ПОМОШ НА АДАПТИВЕН ФАЗИ-НЕВРОНСКИ  

СИСТЕМ НА ЗАКЛУЧУВАЊЕ 

A п с т р а к т: Овoj труд ја презентира употребата на адаптивниот невро-фази-логички механизам на заклучу-

вање (Adaptive Neuro-Fuzzy Inference System – ANFIS) за класификација на електроенцефалограмските (ЕЕГ) 

сигнали. Множеството се состои од два типа ЕЕГ сигнали, т.е. на епилептични пациенти за време на 

епилепсијата и здрави пациенти кога нивните очи се отворени. Претставениот алгоритам има неколку чекори. 

Прво, со цел да се отстранат артефактите (да се исфилтрираат сигналите) користиме филтер со конечен 

импулсен одзив (Finite Impulse Response – FIR) со Хамингов прозорец. Во вториот чекор се прави извлекување 

на карактеристики со користење на дискретна вејвлет-трансформација (Discrete Wavelet Transform – DWT) и 

статистичка анализа. На овој начин се врши редукција на димензионалноста на влезните податоци, подоцна 

искористени како влезни параметри во мрежата ANFIS. Моделот ANFIS учи како да се класифицираат ЕЕГ-

сигналите преку стандардниот хибриден алгоритам. Во овој труд се користи специјална форма на моделот 

ANFIS, кој во зависност од бројот на влезови го дели моделот во соодветен број потструктури (sub-ANFIS-

модели). Точноста на моделот ANFIS се евалуира врз основа на перформансата на моделот (спроведена на 

тренинг и тест-множества), како и прецизноста на класификација. Од симулационите резултати може да се 

заклучи дека претставениот алгоритам има добар потенцијал за класификација на ЕЕГ-сигнали. 

Клучни зборови: адаптивен неуро-фази механизам на заклучување (ANFIS); фази логика;  

вејвлет-трансформација; филтер со конечен импулсен одзив;  

електро-енцефалограмски сигнали (EEG)

1. INTRODUCTION 

Epilepsy is the most common neurological dis-

order affecting 50 million people world-wide, 85% 

of which belong to the developing countries. Aro-

und 2.4 million new cases occur every year globally. 

At least 50% of the epileptic cases begin at child-

hood or adolescence [1]. 



42 M. Stoimchev, V. Ojleska Latkoska 

J. Electr. Eng. Inf. Technol., 3 (1–2) 41–51 (2018) 

The electroencephalogram (EEG) signal is 

widely used clinically to investigate brain disorders 

[14]. Therefore, the study of the brain electrical ac-

tivity through the EEG records, is one of the most 

important tools for diagnosis of neurological dis-

eases [6, 8]. It is possible for experienced neuro-

physiologist to detect the epilepsy by visually scan-

ning of the EEG signals for pre-ictal, inter-ictal and 

ictal activities [1]. However, for a more objective 

analysis and reproducible results, it is always advan-

tageous to detect these activities from the EEG 

signals through some computer methods by extract-

ing relevant features from the signals. Adeli et al. 

[6, 8] launched the field of automated EEG-based 

diagnosis by analyzing and characterizing epilepti-

form discharges using wavelet transform [1]. Some 

of their studies focus on detecting epilepsy by clas-

sifying only the normal and ictal stages (two-class 

problem), as proposed in these studies [4, 7, 13, 14], 

and other studies present methods for classifying all 

three stages, namely normal, interictal, and ictal 

(three-class problem) [33]. 

In order to solve the above-mentioned prob-

lems, i.e. to make an automated system for epilepsy 

detection, there are many proposed methodologies. 

In general, all of the techniques consist of several 

steps, i.e. from data preprocessing as the first step, 

through feature extraction as a second step, to clas-

sification as a third step. 

EEG signals may be corrupted with noises, 

called artefacts which come from patient’s body or 

instruments (examples include: the eyes, the heart, 

or the muscles movement, or the power line noise, 

etc.) [19]. Therefore, removal of these artefacts is a 

primary task and it forms a fundamental step for 

EEG signal preprocessing [19]. This task can be 

solved using conventional filtering methods, or fil-

tering through wavelet analysis [18]. In this study 

for the purpose of data preprocessing we use con-

ventional band-pass FIR filtering technique that 

uses Hamming window [2, 3]. 

For the second step, feature extraction takes 

place. There are many different methods that can be 

used for this task, whereas those techniques include 

frequency domain analysis or time domain analysis, 

or both. Among the techniques that use time-fre-

quency analysis is the wavelet transform (WT) [6, 

8]. The results of the studies in the literature have 

demonstrated that the WT is the most promising 

method to extract relevant features from the EEG 

signals [6. 8, 13]. In this respect, in this study the 

WT was used for feature extraction from the EEG 

signals [6, 8, 13]. 

The final step is classifying the EEG signals. 

There are also different ways for classifying the 

EEG signals as proposed in [6]. Some studies use 

feature extraction method using genetic algorithm-

based frequency domain (GAFD) feature search 

[25], the wavelet-based support vector machine 

(SVM) classifier [26], wavelet-based feed forward 

artificial neural network (FFANN) [17, 24], k-Near-

est Neighbors classifier [28], fuzzy rule-based 

detection 27, Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS) [13, 14, 4], and many others. 

Artificial neural networks (ANNs) have been 

used as computational tools for pattern classifica-

tion including diagnosis of diseases because of their 

great predictive power [24, 30]. On the other hand, 

fuzzy set theory plays an important role in dealing 

with uncertainty when making decisions in medical 

applications [10, 31, 32]. Neuro-fuzzy systems are 

fuzzy systems, which use ANNs theory in order to 

determine their properties (fuzzy sets and fuzzy 

rules) by processing data samples [10]. A specific 

approach in neuro-fuzzy development is the ANFIS 

[10], which has shown significant results in model-

ing nonlinear functions. When input data is given, 

ANFIS learns features and adjust the parameters of 

the system according to a given error criterion [10]. 

There are many successful implementations of 

ANFIS in the biomedical field of engineering, i.e. 

classification of data [11, 12, 13, 14], and data anal-

ysis [15]. 

In this study we present the use of ANFIS for 

classification of the EEG signals, whereas the data 

consist of two types of EEG signals, i.e. epileptic 

patients during epilepsy and healthy patients when 

their eyes are open. We use two sets of data, de-

scribed in [16], whereas S is the data set that con-

tains epileptic patients and Z is the data set that con-

tains healthy patients. The proposed algorithm has 

several steps. First, in order to remove the artefacts 

(filter the signals) we use band-pass finite impulse 

response (FIR) filtering with the Hamming window. 

Feature extraction is made in the second step, using 

discrete wavelet transform (DWT) and statistical 

analysis [13, 14]. In this way we reduce the dimen-

sionally of the input data, lately used as input 

parameters in the ANFIS network. We also perform 

normalization of the data, before it is used for the 

process of training of the ANFIS. This method is 

also called feature scaling method which will enable 

a better convergence when adapting the weighted 

factors in the ANFIS model during the training pro-

cess. ANFIS model learns how to classify the EEG 
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signal, through the standard hybrid learning algo-

rithm. We use a special form of ANFIS model, 

which depending on the number of inputs, splits the 

model into appropriate number of substructures 

(sub-ANFIS models). ANFIS model was evaluated 

in terms of training performance and classification 

accuracies. From the simulation results it was con-

cluded that the proposed algorithm has good 

potentials in classifying the EEG signals. 

Authors in [4, 14] also use wavelet transform 

for feature extraction and ANFIS for classification 

of EEG signals, but our approach differs from theirs 

as we use conventional filtering method (FIR), as 

well as normalization of the data after feature ex-

traction. Our approach gives similar, or somewhere 

even better results, which is summarized in the Sec-

tion 3. 

This paper is organized as follows: in Section 

2 we give a brief introduction to the methodologies 

used in the algorithm (FIR filtering, wavelet trans-

form, and ANFIS). In Section 3 we propose the 

overall algorithm for EEG signals classification, af-

ter which in Section 4 we conclude the paper with 

the necessary conclusions. 

2. MATERIALS AND METHOD 

The algorithm for detection of epilepsy with 

fuzzy-neural networks for classification of EEG sig-

nals in Section 3 consists of several steps, which 

include:  

1) Filtering of the EEG signals with FIR filter.  

2) Feature extraction and dimensionality reduc-

tion with discrete wavelet transform (DWT).  

3)  Classification using ANFIS. 

The general steps are given in Figure 1 and 

their detailed analysеs are presented in Section 3. 

A brief introduction of these methodologies is 

given bellow. 

2.1. Signal De-Noising with FIR filter 

Filtering is the process of selectively allowing 

certain frequencies (or range of frequencies) in a 

signal and attenuating frequency components out-

side the desired range. In most instances, the objec-

tive of filtering is to eliminate or reduce the amount 

of undesired noise that may be corrupting a signal 

of interest. In some cases, the objective may simply 

be to manipulate the relative frequency conent of a 

signal in order to change its spectral characteristics 

[2]. 

EEG signals

(S,Z)

Noise and artefact 

removal with FIR filter

Wavelet decomposition 

for dimensionality 

reduction

FIR filtered 

signals

Reduced dimensional 

space

Normalization 

on dataset

Classification 

with ANFIS

Epileptic

Normal

EEG sub-bands

0-4 Hz 4-8 Hz 8-12 Hz 16-32 Hz 32-64 Hz

Delta Theta Alpha Beta Gamma

Statistical measurements for additional 

dimensionality reduction

Max Min Mean Std

 

Fig. 1. Block scheme for the proposed algorithm 

The filters are divided on analog and digital fil-

ters, where digital filters are classified in two main 

categories that are based on the length of their im-

pulse response, namely Finite Impulse Response 

(FIR) filters and Infinite Impulse Response (IIR) fil-

ters [2, 3]. Each class has its own characteristics and 

implementation needs. In this research the main fo-

cus is on the FIR filter. 

FIR filters are designed by direct approxima-

tion of the magnitude or the impulse response. 

There are two common methods that are used: the 

windowed Fourier series method and the frequency 

sampling method. In this research, our focus will be 

on the windowed Fourier series method [3]. 

The window functions not only can be used to 

smoothen the discontinuities of the signal, but also 

they include specific characteristics in the frequency 

response. To achieve the same set of filter specifics, 

different windows need different filter coefficients 

[2]. 

One of the major difficulties in analysis of 

EEG signals is the presence of the artefacts. This 

disturbance represent serious obstructing factor that 

prohibits further processing to identify useful diag-

nostic features [4]. 

In this study, band-pass FIR filter with Ham-

ming window is used as it is shown in Figure 2 [2]. 

Its main characteristics are: two cutoff frequencies 

(Fc1 and Fc2, respectively), stopband attenuations 

and passband attenuation. The overall band of fre-

quencies are defined by the Nyquist frequency, i.e. 

Fs/2 [2]. 
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Non-filtered 

EEG signal
Filtered 

EEG signal

 

Fig. 2. Band-pass FIR filter with Hamming window. 

2.2. Wavelet analysis for feature extraction 

The frequency content of EEG signal provides 

useful information than time domain representation 

[19]. The wavelet transform gives us multi-resolu-

tion description of a non-stationary signal such as 

EEG signals [19]. 

Wavelets can be literally defined as “small” 

waves that have limited duration and ”zero” average 

values. They are mathematical functions capable of 

localizing a function or a set of data in both time and 

frequency. The wavelet transform is an effective 

tool in signal processing due to its attractive proper-

ties such as time-frequency localization (obtaining a 

signal at particular time and frequency, or extracting 

features at various locations in space at different 

scales) and multi-rate filtering (differentiating the 

signals having various frequency). Using these 

properties one can extract the desired features from 

an input signal characterized by certain local prop-

erties in time and space [6]. 

The WT is defined as the integral of the signal 

𝑥(𝑡) multiplied by scaled, shifted versions of a basic 

wavelet function 𝜓(𝑡), a real-valued function whose 

Fourier transform satisfies the criteria: 
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where 𝑎 is the so-called scaling parameter, 𝑏 is the 

time localization parameter. Both 𝑎 and b can be 

continuous or discrete variables [7]. 

Multiplying each coefficient by a properly 

scaled and shifted wavelet yields the constituent 

wavelets of the original signal. For signals of finite 

energy, continuous wavelet synthesis provides the 

reconstruction formula: 
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Related to the wavelet 𝜓, which is used to de-

scribe the details (high-scale/low frequency con-

tent) in the decomposition, a scaling function 𝜑 is 

used to define the approximations (low-scale/high 

frequency content) [7]. 

To avoid complicated computations when op-

erating at every scale of the CWT, scales and posi-

tions can be selected based on a power of two, i.e. 

dyadic scales and positions. The DWT analysis is 

more efficient and just as accurate. In this scheme, 

𝑎 and 𝑏 are given as: 
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A wavelet filter with impulse g plays the role 

of the wavelet 𝜓, and a scaling filter with impulse 

response ℎ plays the role of scaling function 𝜑. 

Then the discrete wavelet analysis can be described 

mathematically as: 
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The detail at level 𝑗 is defined as: 
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and the approximation at level J: 
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Obviously, the following equations hold: 
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In practice, the decomposition can be deter-

mined iteratively, with successive approximations 

being computed in turn, so that a signal is decom-

posed into many lower-resolution components [7]. 

This is known as the wavelet decomposition 

tree. By using reconstruction filters and up sam-

pling, we can reconstruct the signal constituents at 

each level of the decomposition [7]. 
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In this study Daubechies wavelet [5] function 

is used which represent one of the frequently used 

wavelets which satisfies the conditions of orthogo-

nality, which allows reconstruction of the signals 

from the wavelet coefficients.  

The Daubechies wavelet system [5], a higher 

order generalization of Haar’s wavelet, was shown 

to have superior smoothing effect on signals. The 

first order Daubechies wavelet is actually the Haar 

wavelet. Daubechies wavelets are designed to have 

𝑁/2 vanishing moments where 𝑁 is the number of 

wavelet coefficients [8]. 

We use Daubechies wavelets of order 2 (db2) 

because of the suitability of our problem. They have 

two vanishing moments, and the filter coefficients 

are represented with the equation (9): 
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where ℎ−2 =
1+√3

4√2
, ℎ−1 =

3−√3

4√2
, ℎ0 =

3+√3

4√2
 and 

 ℎ1 =
1−√3

4√2
 are the values of filter coefficients [9]. 

2.3. Adaptive neuro-fuzzy inference system  

The adaptive neuro-fuzzy inference system 

(ANFIS) was firstly introduced by Jang in 1993 

[10]. It is an adaptive neural network that mimics 

the reasoning of either Sugeno or Tsukamoto fuzzy 

models [10, 13, 14]. 

The structure of an ANFIS network for two-

input first-order Sugeno fuzzy model with two rules 

is given on Figure 3. 
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Rule1: if x is A1 and y is B1 then f = p1x+q1y+r1 

Rule2: if x is A2 and y is B2 then f = p2x+q2y+r2  
Fig. 3. ANFIS architecture 

There are five layers, where the Layer 1 is an 

adaptive layer, which contains the input member-

ship functions of the fuzzy system. These member-

ship functions are adapted during the process of 

training. Layer 2 contains fixed nodes, whose output 

is the product of all incoming signals. Layer 3 also 

consists of fixed nodes, which calculates the ratio of 

the ith,s rule firing strength to the sum of all rules’ 

firing strengths (normalized firing strengths). Layer 

4 contains adaptive nodes where the consequent pa-

rameters of the output Sugeno functions are trained 

[10]. 

The initial membership functions and rules for 

the fuzzy inference system can be designed by em-

ploying human expertise about the target system to 

be modeled. ANFIS can then purify the fuzzy if-

then rules and membership functions to describe in-

put-output behavior of a complex system. Jang [10] 

showed that even if human expertise is not availa-

ble, it is possible to intuitively set up practical 

membership functions and employs the neural train-

ing process to generate a set of fuzzy if-then rules 

that approximate a desired data set [4]. 

The ANFIS model uses hybrid learning algo-

rithm in order to find the optimal parameters of the 

same model. It is composed of two phases: 

 In forward pass of the hybrid learning algo-

rithm, node outputs values go forward until 

layer 4 and the consequent parameters are iden-

tified by the least squares method. 

 In the backward pass, the output errors are pro-

pagated backward and the premise para are 

updated by gradient descent method [7, 10, 13, 

14]. 

3. ALGORITHM FOR DETECTION  

OF EPILEPSY USING THE ANFIS CLASSIFIER 

On Figure 4 the overall algorithm for detection 

of epilepsy using ANFIS is given. 

3.1. Input data and FIR filtering of the signals 

The data used in this study was provided by the 

University of Bonn, given in [16]. This collection 

contains EEG data coming from three different 

events, namely, healthy subjects, epileptic subjects 

during seizure-free intervals (known as interictal 

states) and epileptic subjects during a seizure (ictal 

states). The collection contains five datasets identi-

fied as: O, Z, F, N and S; each set holds 100 

segments of EEG signals of 23.6 seconds. The sam-

pling frequency of these signals is 173.61 Hz, so 

each segment contains 4097 samples. Sets O and Z 

were obtained from healthy subjects with eyes open 

and closed, respectively; sets F and N were obtained 

during interictal states in different zones of the brain 

and set S was taken from a subject during ictal state. 
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In order to make comparison with some of the 

works described in section 1, sets Z and S were used 

only for the results reported here [14, 27]. For anal-

ysis, two segments are compared in order to 

visualize the differences of healthy subject and epi-

leptic subject as shown in Figure 5. 
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Fig. 4. Detailed analysis for the overall algorithm  

from Figure 1 

 
Fig, 5. Ratio between EEG signals of healthy  

and epileptic patient 

As we can see, the signal from the epileptic pa-

tient has bigger oscillations, i.e. they have sudden 

transitions along with higher amplitude peaks than 

the signal from the healthy patient. 

The next step of the overall algorithm is filter-

ing of EEG signals, i.e. defining preprocessing 

technique which will allow reduction of artefacts 

which is key factor in the analysis of the medical 

signals [18]. 

As it was stated in Section 2.1, band-pass FIR 

filter with the Hamming window is used [2, 3]. As 

we said, it characterizes with two cutoff frequen-

cies, namely, lower cutoff frequency Fc1 and higher 

cutoff frequency Fc2. In our case they are 1 Hz and 

60 Hz, respectively, and this is in order to eliminate 

the artefacts that have corrupted the EEG signals 

[19]. 

Below 1 Hz are the artefacts that are coming 

from the human body, and above 60 Hz is the power 

line noise. On Figure 6(a) and Figure 6(b) ratio be-

tween filtered and non filtered signals of healthy 

patient and epileptic patient is shown respectively. 

(a) (b)  
Fig. 6. Ratio between filtered and non-filtered EEG signals for 

(a) healthy patient and (b) epileptic patient 

3.2. Feature extraction using  

Discrete Wavelet Transform (DWT) 

Our next step from the algorithm is feature ex-

traction with DWT [13, 14]. The number of decom-

position levels is chosen to be 4. The levels are cho-

sen such that those parts of the signal that correlate 

well with the frequencies required for classification 

of the signal are retained in the wavelet coefficients 
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[7, 13, 14]. After the DWT, the signal is decom-

posed in details D1–D4 and one final approximation 

A4, as it is shown in Figure 7. 

EEG signal

64 Hz

g(n)

h(n)

Gamma

32-64 Hz

CD1

CA1 g(n)

g(n)h(n)

h(n)
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h(n)
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8-12 Hz
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4-8 Hz

Delta

0-4 Hz

CD3

CA3
CD4

CA4

 

Fig. 7. Wavelet procedure for 4 levels of decomposition 

The wavelet coefficients are calculated using 

Daubechies wavelets of order 2 (db2) in MATLAB 

[20]. For visual analysis, the multistage decomposi-

tion on one signal from an epileptic patient are given 

on Figure 8. 

 

Fig. 8. Wavelet decomposition with Daubechies  

of order 2 on epileptic patient 

Table 1 represents the frequencies that corre-

spond to the different levels of decompositions for 

db2 with sampling frequency of 173.61 Hz. We can 

see that the approximation coefficients CA4 are cor-

rectly placed within the range of δ (0–4 Hz) brain 

waves, CD4 are placed in θ (4–8 Hz), CD3 in α (8–

12 Hz), CD2 in β (16–32 Hz), and lastly, CD1 are 

placed within the range of γ (32–64 Hz) brain waves 

[7]. 

T a b l e  1 

Frequencies corresponding to different levels  

of decomposition for Daubechies 2 with sampling 

frequency of 173.61 Hz 

Decomposed 

signal 

Frequency range 

(Hz) 

Decomposition 

level 

CD1 43.40–86.80 1 (gamma) 

CD2 21.7–43.40 2 (beta) 

CD3 10.85–21.7 3 (alpha) 

CD4 5.425–10.85 4 (theta) 

CA4 2.7125–5.425 4 (delta) 

 

For additional dimensionality reduction of the 

dataset, statistical analysis of the wavelet coeffi-

cients is made. The following statistical measure-

ments are used to represent time-frequency distribu-

tion of the EEG signals: 

 Maximum of the wavelet coefficients in each 

subband. 

 Minimum of the wavelet coefficients in each 

subband. 

 Mean of the wavelet coefficients in each 

subband. 

 Standard deviation of the wavelet coefficients 

in each subband. 

Now, instead of having dataset with bigger di-

mensionality, we have dataset with reduced dimen-

sion. The dimension of the dataset is 200 × 20, i.e. 

200 EEG segments along with 20 extracted features 

(4 statistical measurements × number of extracted 

coefficients = 20 features for each EEG segment). 

3.3. ANFIS for classification of EEG signals 

Before the process of training and testing on 

the ANFIS classifier, all the columns of our dataset, 

i.e. the features, are normalized within the range 

from 0 to 1, in order to achieve stable convergence 

on the weighted factors of the neural network during 

the training process. This is also called a feature 

scaling method which represents our next step of the 

overall algorithm. The min-max normalization tech-

nique is used for normalizing the input features [21].  

The ANFIS classifier is trained with the hybrid 

algorithm [7, 10, 13, 14] whereas the 20 features are 

used as input patterns which represents the EEG sig-

nals. As this is a supervised learning problem (we 

have the information of the output labels), we define 

output vector which represents the 21st column, i.e. 

the segments from the epileptic patients are labeled 

with ones, and the segments of the healthy patients 
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are labeled with zeros. The overall dataset is divided 

onto training set for training the ANFIS model, and 

test set for testing the accuracy, with the ratio of 

70%–30%, respectively. 

Before we start the training process, we define 

the initial ANFIS structure in MATLAB [22], and 

as a partitioning method of the input space, we use 

grid partitioning [10]. The ANFIS structure consists 

of membership functions divided in three regions, 

namely, small, medium and big [14] that are as-

signed to every input feature, i.e. generating 320 =
3486784401 if-then rules. According to this, we 

face the problem called “curse of dimensionality” 

[10]. In order to avoid this problem, we define a dif-

ferent way of dividing the ANFIS structure into 

many substructures [22]. The ANFIS structure is di-

vided according to the input features, in our case it 

is divided into 7 substructures. The substructures 

from 1 to 6 receive 3 input features that will lead to 

33 = 27 if-then rules, and the last one will have 

32 = 9 if-then rules. With this, we surpassed this 

major obstacle (Figure 9). 
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Fig. 9. Division of ANFIS onto 7 substructures 

For the input membership functions we use 

generalized bell-shaped membership functions 

(gbellmf). From illustrative character, the initial 

membership functions for the second and seventh 

substructures are shown on Figure 10(a) and (b), re-

spectively. In the second substructure the input 

parameters are: maximum of θ, maximum of δ and 

minimum of γ wavelet coefficients, and in the sev-

enth substructure we have only two features as input 

parameters, namely: θ standard deviation and δ 

standard deviation of the wavelet coefficients. 

(a) (b)  

Fig. 10. Initial generalized bell shaped membership functions 

for substructure 2 (a) and substructure 7 (b) 

The model is trained with different number of 

epochs and the accuracy is defined according to the 

error measure R for the overall ANFIS [14]. After 

the training, the parameters of the ANFIS network 

are changed, as shown in Figure 11(a) for the second 

substructure and in Figure 11(b) for the seventh sub-

structure. 

(a) (b)  

Fig. 11. Final generalized bell shaped membership functions 

after training for substructure 2 (a) and substructure 7 (b) 
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On Figure 12(a) the ratio between the accura-

cies of the training and testing set are shown, while 

on Figure 12(b) the ratio between root mean square 

errors (RMSE) on training and testing sets during 

different number of epoch is shown. 

(a) (b)  
Fig. 12. Training and testing accuracies (a); training and 

testing RMSEs (b) generated for different number of epochs 

From Figure 12 we see that in three moments 

we get 100% accuracy and zero RMSE on testing. 

This suggests us that if we over train the ANFIS 

model, it will result in overfitting [23], which will 

reduce the predictive power of the ANFIS or any 

neural network. According to this, for small datasets 

like in our case, it is enough to train the model with 

60 epochs in order to get satisfactory results with 

testing accuracy of 98.3% and optimal RMSE of 

0.191. Figure 13 presents the accuracy for 60 

epochs. 

 

Fig. 13. Test set accuracy for 60 epochs 

Also, we tested the ANFIS model on the over-

all dataset as shown in the Figure 14. 

 

Fig. 14. Overall set accuracy for 60 epochs 

As we can see, we get even better results on 

classifying all the EEG segments of 99.5% accu-

racy. The classification results for the ANFIS model 

are shown in Table 2 for the testing dataset (1 is an 

epileptic patient, and 0 denotes a healthy patient).In 

this table, each cell contains the raw number of ex-

emplars classified for the corresponding combina-

tion of targeted and actual network outputs. As we 

can see, we make 1 misclassification, i.e. classifying 

an epileptic patient as a healthy patient. 

T a b l e  2  

Confusion matrix for 60 epochs on the test dataset 

Target 
Output 

Set Z Set S 

Set Z 26 1 

Set S 33 0 

 

We briefly describe some work that report re-

sults using Bonn database [16], which is used in our 

research.  

E. Juarez-Guerra et al. [17] presented the re-

sults of a model based wavelet analysis and neural 

networks for identification of seizure events and ep-

ilepsy. They’ve tested several filters, wavelets and 

wavelet transformations, namely, Haar, db2 and 

db4. Six features have been used to train the Feed-

Forward Artificial Neural Network (FF-ANN): 

mean, absolute median and variance of delta and al-

pha sub-bands. When using the whole segments for 

training, 93.23 % of accuracy has been achieved. 

Whereas when using sub-segments for training, 

99.26 % of accuracy has been achieved. Thus, the 

accuracy rates of the ANFIS model presented for 

this application were found to be higher when sub-

segments for training are used (in our case we only 

use sub-segments for training) than E. Juarez-

Guerra et al. [17]. 

I. Omerhodzic et al. [24] presented algorithm 

for classification of EEG signals based on Wavelet-

Neural Network classifier. DWT with multiresolu-

tion analysis (MRA) based on Daubechies of order 

4 (db4) has been applied to decompose the EEG sig-

nals at resolution levels of the components of the 

EEG signal. They used percentage distribution of 

the energy as features of the EEG signals at different 

resolution levels. The classifier has been used to 

classify those extracted features to identify the 

EEGs type according to the percentage distribution 



50 M. Stoimchev, V. Ojleska Latkoska 

J. Electr. Eng. Inf. Technol., 3 (1–2) 41–51 (2018) 

of energy features. They achieved 94 % overall acu-

racy, so that our ANFIS model showed higher 

accuracy than the study proposed by I. Omerhodzic 

[24] (Table 3). 

T a b l e  3 

Comparison of the accuracy results between our 

and other studies 

Accuracy (%) Test set 

accuracy 

Overall set 

accuracy 

This study 98.33 99.5 

E. Juarez – FFANN 99.26 93.23 

I. Omerhodzic Wavelet + Neural  

Network / 94 

 

We have to note that the authors in [14] also 

use wavelet transform for feature extraction and 

ANFIS for classification of EEG signals, but our ap-

proach differs from theirs as we use conventional 

filtering method (FIR), as well as normalization of 

the data after feature extraction. When we compare 

only the numbers, our approach gives similar, or 

somewhere even better results from theirs. They get 

98.63% test accuracy of the test set Z (healthy), and 

98.25% test accuracy on the test set S (epileptic), 

whereas we get 98.33% accuracy on the test set con-

taining both healthy and epileptic patients. Never-

theless, we have to strictly note that they make 5 

class classification, which differs from our 2 class 

classification, which is why we did not summarize 

their results in Table 3. 

4. CONCLUSION 

This paper presented the use of ANFIS for 

classification of the two classes EEG signals. The 

input parameters in the ANFIS model were the ex-

tracted features of the wavelet coefficients. The 

proposed ANFIS combined the adaptive capability 

of the neural networks and the qualitative approach 

in the fuzzy logics. The ANFIS classifier which was 

trained with 60 epochs reached 98.3% accuracy on 

the test set, and 99.5% classification accuracy on the 

overall dataset. We also made comparison with the 

results presented in other related works, whereas we 

can conclude that the proposed algorithm can be 

successfully used in classification of EEG signals.  
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