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A b s t r a c t: This paper presents a fully automated, computationally inexpensive and high quality exposure 

fusion algorithm, intended for use on mobile or handheld devices. A utilization of the device's view-finder screen 

video feed data is proposed, in order to increase the overall performance of the exposure fusion, both in static scenes 

and in scenes with moving objects. Several novel ideas are implemented in order to make the whole procedure fully 

automated, working without need for any intervention, or parameter adjustment by the end-user. The performed ex-

perimental tests show an efficient performance and high quality results, both in visual and objective terms. 
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АВТОМАТИЗИРАНА И ПРЕСМЕТКОВНО ЕФИКАСНА ЕКСПОЗИЦИСКА ФУЗИЈА  

ЗА МОБИЛНИ УРЕДИ 

А п с т р а к т: Во овој труд е претставен автоматизиран и пресметковно ефикасен алгоритам за 

експозициска фузија со висок квалитет на излезните слики, наменет за употреба во мобилни и рачни уреди со 

ограничена пресметковна моќ и ограничен мемориски простор. Предложена е употреба на видео-поток наме-

нет за корисничкиот екран на уредите, со цел да се подобри квалитетот на експозициската фузија. Алгорита-

мот работи за слики со статички сцени, но и за слики со подвижни објекти. Повеќе нови идеи се имплемен-

тирани со цел да се автоматизира целата постапка и крајниот корисник да може да работи без никаква 
интервенција или нагодување на параметри. Извршените експериментални тестови укажуваат на тоа дека 

предложениот алгоритам работи ефикасно и генерира резултати со висок субјективен и објективен квалитет. 

Клучни зборови: eкспозициска фузија; пресметковна ефикасност; мобилна платформа, декомпозиција на 

слика, естимација на движење 

1. INTRODUCTION 

However advanced, all the modern imaging 

devices have limited physical capabilities that can 

often be surpassed by the photometric quantities of 

the recorded real world scenes. In the case of a 

scene with high radiance dynamic range (HDR), 

the imaging device can be set to capture only 

fragment of the scene area with an optimal expo-

sure (low dynamic range – LDR), and the rest of 

the scene objects would be either too bright or too 

dark in the final digital image. 

To solve this problem, instead of one, two or 

several LDR input images are recorded from the 

scene, each with a different exposure setting, cap-

turing different intervals of the radiance range. Af-

terwards, the information present in the input im-

ages is combined, to obtain an output image with 

higher visual quality, where all the objects are 

properly exposed and easily distinguishable. 

Limited only to the professionals possessing 

knowledge and expensive equipment a few dec-

ades back, nowadays these image combining pro-

cedures are available almost to everyone holding a 

camera, following the advancements in both the 
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algorithms and the hardware. Various software 

tools for image processing support them, and the 

scientific community constantly provides new and 

better solutions [1–19].  

The two adopted concepts are the true HDR 

processing, and the exposure fusion (EF) process-

ing. The true HDR processing [1], [2], [8], [38], 

yields HDR output image with luminance ranging 

in several orders of magnitude that is not suitable 

for reproduction on the standard electronic view 

screens. Hence, the HDR image has to be range-

compressed, or tone-mapped to a standard, 8-bit, 

LDR image [3], while preserving local contrast as 

much as possible. The earliest HDR works were 

based on reconstruction of the real radiance in the 

scene, using no a priori data for the input images 

[1] or using the information about their exposure 

times to recover the camera response function [2] 

Early works focused mainly on the image com-

bining methods and assumed perfectly aligned in-

put images. The modern state of the art algorithms 

shift their center of attention towards the real world 

usage, in scenes with moving objects, or non-static 

cameras. In [8], the HDR image synthesis equation 

is introduced for patch-based energy minimization, 

which allows non-aligned input images and mov-

ing objects in the scene. 

The EF processing [4]–[7], [9], [10] does not 

involve an intermediate HDR stage, and fuses the 

most informative areas from the input LDR images 

directly to a single LDR output image, not consid-

ering the real radiance interdependences (lighter, 

darker) of the objects in the scene. The modern EF 

algorithms use large number of concepts to per-

form the actual fusing, few of the notable being the 

multi-scale decomposition approach [4], [6], [10], 

the maximum entropy approach [5], the global en-

ergy optimization approach [7], and the luminance 

segmentation approach [9]. 

Similar to the HDR processing, the EF algo-

rithms recently shifted towards real world usage 

scenarios, where the static camera assumption is 

not always true, and the recorded scene can contain 

moving objects, leading to ghosting artifacts in the 

fused image. Numerous contributions were pub-

lished in the last decade [11]−[19], which are fo-

cused solely on the problems of image mis-

alignment and ghosting artifacts. The solutions are 

usually implemented as a preprocessing step, prior 

to the HDR or EF process. 

Some of the algorithms consider only the spa-

tial alignment of the images recorded by a non-

static camera from a static scene [11], [12]. Others, 

assume static camera and correct the object motion 

in the scene [18], [19], and some of them engage 

both problems simultaneously [13] − [17]. 

Whereas all of the mentioned algorithms 

work well under their design scenarios, none of 

them is specifically designed for usage on a mobile 

device, where certain demands are in place re-

garding processing power, memory consumption, 

and procedure automation. Most of the algorithms 

are too complex or iteratively based, some utilize 

computationally expensive filtering [5], [10], lack 

non-supervised operation [6], [10], or assume static 

scenes and perfectly aligned input images [4]−[7], 

[9], condition that is almost never met if the algo-

rithm is implemented on a handheld mobile device. 

Also, the total processing time must be kept rela-

tively short otherwise the end-users would rarely 

opt for this procedure. Although in some of the 

algorithms fairly short computing times are pub-

lished for their optimized codes, those results are 

always obtained on a desktop PCs, and often low-

resolution input images are used for testing. 

Several main principles should be followed, 

in order to design and build an EF algorithm that 

can be implemented on a mobile device: 

1) The whole procedure should be performed 

completely automatically, without any end-

user intervention. There should be no exter-

nally adjustable parameters. A "single click" 

approach should be adopted, where the 

mobile device captures, stores, and processes 

all the necessary input data for the exposure 

fusion, and delivers single output image. 

2) The procedure should be implemented in an 

efficient and computationally inexpensive 

way, such that it should be easily executed 

on any modern mobile hardware (e.g. ARM 

based platform, or similar). 

3) The handheld usage cancels the assumption 

of the input images perfect spatial alignment. 

Inclusion of a global motion compensation 

preprocessing step is mandatory. This step 

should not increase in a significant way the 

total computational load of the EF procedure. 

4) In most of the usage scenarios, the static 

scene assumption will not be valid, and ob-

ject motion will be present. Implementing 

full frame motion estimation and compen-

sation is not feasible, due to its high compu-

tational load. Instead, the fusion algorithm 

should be made robust to such object motion, 

implementing intelligent and adaptive selec-
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tion criteria, carefully choosing the parts 

from the input images that will be included in 

the output image. 

5) The procedure should be universal, and inde-

pendent on the capturing device properties. 

Any image statistics or parameters needed 

for the fusion, should be calculated directly 

from the captured images, and should be as-

sumed a priori unknown. 

In this paper a complete exposure fusion pro-

cedure is proposed. It is designed specifically for 

usage on a mobile platform devices. The proposed 

algorithm works in the Luminance/Chrominance 

color space, and its core is based on the multi-scale 

image decomposition into the Laplacian pyramid 

[26]. Considering the above stated principles, sev-

eral novel solutions are implemented, among them, 

accelerated computing employing integer opera-

tions, lowpass filtering using only additions and 

binary shifts, forward pyramid implementation, 

automatic calculation of the optimal pyramid 

height, adaptive selection criteria, viewfinder data-

stream utilization, incomplete pyramid decompo-

sition, reduced motion vector set for input image 

alignment, and overall decision whether the fusion 

process is necessary for the recorded scene. 

The experiments show that both visually and 

in terms of objective fusion quality measures, the 

proposed EF procedure obtains comparable, and 

often superior results, evaluated against the state-

of-the-art fusion methods. 

Computationally wise, the proposed EF pro-

cedure works in a fast and efficient way. A Java/C 

implementation of the algorithm core tested on an 

Android mobile devices, requires as little as 60 ms 

to finish the fusion of a VGA sized image. 

The rest of the paper is organized as follows. 

The proposed EF procedure is explained in detail 

in Sections 3 − 5. The experimental validation of 

the work is given in Section 6, and Section 7 con-

cludes the paper. 

2. PRIOR CONNECTED WORK  

In the recent few years, several contributions, 

[20]−[25], gradually led to the development of all 

the parts of the proposed algorithm. Firstly, the 

procedure was intended to work with two input 

images, the overexposed (OV), obtained with posi-

tive exposure bias and the underexposed (UN) ob-

tained using an equivalent (in absolute terms) 

negative exposure bias. The optimal exposure bias 

values that would result in capturing the highest 

radiance range from the recorded scene, was de-

duced in [20]. Later, an automated EF algorithm 

for mobile platforms was proposed in [21], based 

on Laplacian pyramid decomposition, and using 

the results published in [22], to determine the op-

timal number of decomposition levels. The algo-

rithm [21] performed fairly well in a static scene 

and static camera scenarios however its perform-

ance rapidly degraded under dynamic conditions. 

A real time global motion compensation algorithm 

was developed in [23], to address the problem of 

non-static camera, performing spatial alignment of 

the input images. This algorithm was limited only 

to translational motion correction, so it was later 

replaced by the procedure proposed in [24], based 

on calculating only a reduced set of motion vectors 

in the input images, and determining the global 

motion in the scene. This procedure could correct 

both translational and rotational movements of the 

camera/scene. The error robustness of the proce-

dure was further increased in [25], using a cross-

validation of the resulting motion vectors to detect 

and isolate the incorrectly calculated ones.  

In this paper, the contributions from [20]− 

[25], are joined in one high quality fully automatic 

EF procedure, along with one concept change and 

several new possibilities coming out of it. The pro-

posed concept change is the idea to utilize the mo-

bile device's viewfinder video stream, providing 

additional information to the existing two input 

images (UN and OV), in the form of low-

resolution frame VF (viewfinder), captured without 

exposure bias. Although this is not equivalent as 

working with three full resolution input images, the 

information obtained from the VF image is enough 

to ensure highly adaptive selection criteria, leading 

to the robustness of the whole algorithm to the 

moving objects in the scene. 

3. THE ALGORITHM OVERVIEW 

The proposed procedure is designed to work 

using a Luminance/Chrominance based color 

space, which is the most common color represen-

tation method for the mobile devices with image 

capturing ability. The overview of the whole pro-

cedure is shown in Figure 1. 

Normally, the end-user begins with scene pre-

viewing on the viewfinder screen. At this time, the 

device measures the light in the scene and calcu-

lates the optimal exposure time, according to the 

selected metering mode. For the proposed EF pro-
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cedure, the matrix or evaluative metering mode is 

preferred, since the spot metering mode could ob-

tain incorrect information about the overall light 

radiance in the scene.  
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Fig. 1. The workflow of the fully automatic EF procedure. It starts with a single capture command  issued by the end-user, results in a single output 

image stored on the mobile device. No user intervention is needed in the process, and there are no externally adjustable parameters. 

When the scene is locked and the capture 

command is issued, the EF procedure first decides 

whether the scene contains high dynamic radiance 

range. If the dynamic range of the scene is normal 

or low, the device performs as normal digital cam-

era, capturing a single, properly exposed input im-

age (PR), using the calculated optimal exposure 

time. The PR image is without further processing 

stored in the device. 

If the scene contains high dynamic radiance 

range, then instead of one, three input images are 

recorded. The first is a snapshot from the view-

finder screen in the moment of the capture com-

mand. It represents a low resolution, properly ex-

posed image, VF. The second and third images are 

two exposure bracketed, full resolution images, 

UN and OV. 

The captured input image set (VF, UN and 

OV) is subjected to the alignment part of the pro-

cedure (Section 4), where the VF and OV images 

are spatially aligned to match the background of 

the UN image. The aligned input image set is then 

pipelined to the multi-level fusion part of the pro-

cedure (Section 5), where the actual EF takes 

place. In the end, a single resulting output image is 

stored on the device, the fused image FU. The rest 

of this section addresses some of the global solu-

tions implemented in the proposed procedure. 

A) The necessity of the EF in the scene 

A significant number of recorded scenes 

would not require the execution of the EF proce-

dure, due to their low radiance dynamic range. In-

stead, a regularly captured single image, using the 

calculated optimal exposure time, would be able to 

represent correctly both the brightest and the dark-

est objects in the scene.  

The decision part depicted in Figure 1 is bas-

ed on the data present in the bit-stream used by the 

viewfinder screen of the device. Alternatively, the 

captured VF image could be used, or mostly rec-

ommendable, the live histogram option, if the de-

vice has such. The proposed procedure divides all 

the pixels from the preview image in two bins, ac-

cording to their luminance levels. The first bin 

contains the so called non-saturated pixels, with 

luminance levels between two empirically obtained 

thresholds, valued at 20% and 80% of the maxi-

mum possible luminance level. The second bin 

contains the rest of the pixels, representing the 

saturated and the near saturated pixels, accounting 

both black and white saturation. 

The experiments performed on a real world 

images show that in the scenes where the number 

of the non-saturated pixels is higher than the num-

ber of saturated and near saturated pixels in the 
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preview image, the EF procedure should be 

skipped.  

Considering the small size of the preview im-

age, and the simplicity of the decision process (lu-

minance thresholding and pixel counting), this 

process can be performed in negligible time, or 

even preemptively, as a real time background 

process active whenever the camera is in use. 

B) The optimal exposure bias 

The exposure biases used in the bracketing 

when capturing the UN and OV images should be 

set high enough, so that maximum possible radi-

ance range from the scene is covered. However, 

too high exposure biases can lead to a middle gap 

in the covered range, and incorrect representation 

of the medium bright objects. In [20], the mathe-

matical analysis is performed to obtain the optimal 

value for the exposure bias. 

The non-linear equation that maps the real 

luminance levels from the scene, Y, to the per-

ceived lightness by a human observer, L*, is given 

by the CIE (Commission Internationale de 

l’Eclairage) standard [28], in (1). The parameter Yn 

is one of the three tristimuli (Xn, Yn, Zn) of a spe-

cific white color (referent white). 
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 (2) 

The unity value of luminance can be declared 

for the referent white (Yn = 1). The lightness L* 

can be linearly mapped to the digital luminance 

values (DLL: 0–255) in the 8-bit coded photogra-

phy. Implementing these simplifications, (1) can be 

rewritten as 

 ( ) 332.55 116 16    for  > 8.9 10DLL Y Y
−= ⋅ ⋅ − ⋅  (3) 

and its inverse 
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These equations give simplified transfer func-

tion for digital camera operation, accurate for rela-

tive luminance values above 0.89%, or digital lu-

minance levels above 19. Using the matrix me-

tering mode, the automatic optimal exposure cal-

culation should set the middle gray digital level 

(DLL = 127) to match the average luminance in the 

scene, leading to near symmetrical distribution of 

the white and black saturated areas in the properly 

exposed (PR) image. This allows exposure brack-

eting using symmetric exposure biases in the OV 

and UN images.  

The optimal exposure biases of the exposure 

bracketed images OV and UN should be set in a 

manner that, the OV image would capture the bor-

der black saturated pixels (DLL = 0 in the PR im-

age) as middle gray level, and the UN image cap-

turing the border white saturated pixels (DLL = 

255 in the PR image) as middle gray level. Be-

cause (4) is valid only for DLL above 19, the opti-

mal exposure bias can be obtained for the underex-

posed image, and the bias for the overexposed im-

age can be set  symmetrically. 

The increase or decrease of the exposure bias 

for one point corresponds to doubling or halving 

the relative luminance [28]. To capture the white 

saturated pixels in PR image as a middle gray level 

pixels in the UN image, the camera exposure bias 

EB should be decreased by ∆EB: 

3

.
2 2

.

255 40.8
log log 2.454 points

127 40.8

WHI SAT

MID GRAY

Y
EB

Y

  + 
∆ = = =   +  

.(5) 

The closest standard values implemented in 

the digital cameras are 2.33 points or 2.66 points. 

However, in the low-end digital cameras built into 

the pocket mobile devices, the values of the possi-

ble exposure bias rarely exceed ± 2.00 points. Tak-

ing this into account, the ± 2.00 points exposure 

biases are adopted in the development of the pro-

posed EF procedure, and all the experiments are 

performed using thats values. 

4. THE IMAGE ALIGNMENT PART 

For the spatial alignment of the input images, 

the registration algorithm proposed in [24] is used, 

which estimates five representative motion vectors, 

named joint motion vectors, between each pair of 

input images, and performs the actual alignment 

using fast operations like shifts and slice-based 

warps. The motion estimation is performed on 8×8 

pixel blocks, using the hierarchical technique [31]. 

The key points of the algorithm are presented here, 

however, for full comprehension of the process, 
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the reader is encouraged to study the work pre-

sented in [24]. 

A) Motion estimation between differently exposed 

images 

All images in the input image set are captured 

with different exposure settings, rendering them 

ill-suited for the standard motion estimation tech-

niques. The two major problems to overcome are 

the loss of contrast and details in the white/black 

saturated regions in the input images, and the dif-

ference in their overall brightness. 

The solution of the first problem is to avoid 

the saturated regions. A simple activity threshold is 

implemented for the decision whether the 8×8 

pixel block is suitable for motion estimation or 

should be avoided. The activity for block with 

elements xi (i = 1, 2,...64) is calculated as in (6): 
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i i

i

x x
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+

=

−
=
∑
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Calculation of this activity parameter, in ad-

dition to the saturated regions, also helps to avoid 

the flat regions of the image where the motion es-

timation is unreliable. 

An example, showing typical values of the ac-

tivity parameter, is shown in Fig. 2. Using a num-

ber of examples, the actual activity threshold is 

empirically set to 5. No block with lower activity is 

used for motion estimation. The reduced motion 

vector set scheme explained below is capable to 

compensate for missing motion vectors in the im-

age. 

 

Fig. 2. Typical values of the activity parameter in common 

image areas. 

The second problem, the different brightness 

and contrast in the input images is solved by ad-

justing the core of the motion estimation routine. 

Instead of searching for the most similar block in 

the terms of luminance, a different comparison tool 

is implemented, the content match, CM, defined in 

(7) and (8). The statistical background of the CM 

parameter is in some ways similar to the SSIM 

[32], however, CM is more rudimentary, and less 

computationally demanding.  
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The parameters CA and CB are defined as con-

tent measures for the blocks A and B. The content 

measure for the block A with elements xi (i = 

1,2,...64) is defined as in (8): 
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where AM is the mean value of the elements in A. 

The content match parameter CM, calculated 

for two blocks, has lower values if the blocks have 

more similar content. This parameter is insensitive 

to changes in brightness or contrast, making it per-

fect for motion estimation in images captured with 

different exposure settings. 

B) Reduced motion vector set 

Five square sections are defined in each im-

age, one in the image center and four in the cor-

ners, leaving margin to the image edges equal to 

10% of the image diagonal (in pixels). The sizes of 

the sections should be set in such manner, that the 

displacements in all directions of up to 1% of im-

age diagonal could be estimated. This represents 

the limit of the image alignment part, set by the 

number of experiments. The images displaced by a 

higher value often come with motion blur and are 

too degraded to be usable for EF. The actual size 

of the sections is recommended to be a power-of-

two, in order to facilitate fast implementations of 

the down sampling and hierarchical motion esti-

mation. For each section, one motion vector is cal-

culated, called joint motion vector, obtained by 

averaging the best 4 representatives of the esti-

mated 10 motion vectors at random locations (and 

complying to the activity rule) in the section. The 

best representatives among estimated vectors are 

decided by their (lowest) CM scores. 
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The prospect of using only 10 randomly cho-

sen motion vectors in each section is derived from 

a statistical experiment performed on 338 freehand 

captured image pairs, and shown in Fig. 3. All the 

image pairs were manually aligned, and the ground 

truth motion vectors were extracted. The compari-

son between the ground truth motion vectors and 

the calculated joint vectors in terms of the Spear-

man's rank correlation coefficient, showed that a 

heavily reduced and randomly chosen motion vec-

tor set can be used in calculation of the joint vec-

tors, without losing the accuracy. The result in 

Figure 3 states that introducing more than 10 vec-

tors per section does not increase the accuracy fur-

ther. 
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Fig. 3. Correlation between the ground truth motion vectors and joint 

motion vectors calculated from 338 image pairs captured with free 
hand. In the cases where the number of randomly chosen motion vec-

tors is lower than 4, the whole set is used in calculation of the joint 

vectors. In the other cases, the 4 lowest CM scoring representatives 
are used 

C) Validation of the motion estimation results 

Although a high correlation is calculated be-

tween the ground truth motion vectors and the es-

timated joint vectors, the actual error check shows 

that total of 150 out of 1690 joint vectors were in-

correctly estimated, contained in 69 out of 338 im-

age pairs. 21 of those 69 image pairs have dis-

placements that are out of the reach of the pro-

posed algorithm, too complex or higher than 1% of 

the image diagonal. That leaves 48 image pairs 

where some of the joint vectors are erroneously 

calculated. Thus, a post-processing procedure is 

implemented to test and validate the results of the 

motion estimation. 

The obtained five joint vectors per image pair 

are subjected to k-fold cross-validation of their 

values, testing each of them for consistency with 

the globally calculated motion, and correcting up 

to 2 out of 5 inconsistent joint vectors. Using a 

modeling of the global 3D motion as proposed in 

[30], an analysis performed in [25] shows that only 

two joint vectors are enough to calculate the global 

motion of the whole scene, allowing to the test 

consistency of the remaining joint vectors against 

the calculated global motion in their respective lo-

cations. The testing is performed using the "leave-

one-out" strategy, where each joint vector is tested 

against the global motion calculated and averaged 

from all possible 2 out of 4 combinations from the 

other 4 joint vectors. The correctness of the tested 

joint vector is decided by comparing the estimated 

error to the empirically obtained threshold value. 

To remove the false positives, a second iteration of 

testing is performed, in which all the joint vectors 

are tested again, however, this time the global mo-

tion is calculated using only the joint vectors that 

were cleared as correct in the first iteration. 

Considering the low amount of processed 

data, the validation procedure is computationally 

irrelevant. Performance wise, as shown in [25], it 

offers an error detection rate of 92%, and error cor-

rection rate of 68%. Naturally, these rates would be 

heavily dependent on the statistical properties of 

the input images, and the camera operating behav-

ior of the end-user.  

D) Fast shift and warp alignment 

After obtaining the five joint vectors, a simple 

and fast image alignment procedure takes place. 

All the operations are performed only on one of the 

images in the processed pair (usually the OV im-

age is aligned respective to the UN image). The VF 

image, being much smaller in size than OV and 

UN, is not aligned because the global motion is 

unnoticeable when the input images are downsam-

pled to the size of the VF image. 

At first, the global displacement vector is cal-

culated as the mean value from the Cartesian coor-

dinates of the five joint vectors. This vector is used 

for the translational shift of the image. Then, the 

global vector coordinates are subtracted from the 

coordinates of the four corner joint vectors, ob-

taining vector differentials. At the end, the slice-

based warping is applied to the image, to match the 

motion expressed by the vector differentials. For 

the warping, the image is divided in horizontal and 

vertical slices which movements are extrapolated 

using the vector differentials and image geometry. 

The slices are shifted only by integer number of 

positions, and following the rule that the shift of 

each slice cannot be higher than 1 pixel relative to 

its neighboring slices.  
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E) Computational complexity 

The Table 1 contains the information about 

the computational complexity of the alignment 

part, without the computationally irrelevant parts, 

the cross-validation and shift/warp procedures. The 

whole alignment procedure works in under one 

operation per output pixel, which is negligible 

compared to the rest of the EF procedure. Such 

efficiency makes the alignment part a perfect pre-

processing tool for global motion compensation of 

the images captured with hand held imaging de-

vice. The analysis in the Table 1 is performed for a 

5 megapixel image pair. However, input images 

with higher resolutions would actually lower the 

per-pixel computational load, as the total number 

of pixels increases faster than the total number of 

operations. 

The actual down sampling method used in the 

hierarchical motion estimation is explained later in 

the text, because the same method is used for the 

pyramid decomposition in the EF procedure.  

T  a  b  l  e   1  

The alignment part: computational complexity 

(Number of operations) 

Op. type Add. Shift Sign Mul. ∑ 

Per comparison1  507 4 192 2 705 

Per vector2 22k 180 8k6 90 32k 

Per section3 228k 1800 86k 900 317k 

Only motion 

estimation 4 1140k 9000 432k 4500 1586k 

Down sampling 

of the sections 762k 0 109k 0 870k 

Total per one 

output image  1902k 9000 541k 4500 2456k 

Normalized5  

per output pixel 0.38 ≈ 0 0.11 ≈ 0 0.49 

1) Calculating the CM factor between two 8×8 blocks 
2) 45 comparisons  = 5 resolution levels · 9 comparisons per level 
3) Reduced set with 10 motion vectors per section 
4) Five sections in image (without down sampling of the sections) 
5) Five MP image = 2592×1944 pixels 

5. THE MULTI-LEVEL FUSION 

The overview of the main part of the EF pro-

cedure, the Laplacian-pyramid based multi level 

fusion, is shown in Fig. 4. General lumi-

nance/chrominance color space is used, the actual 

one (e.g. YUV, YIQ, YPbPr) being irrelevant, as 

the chrominance components are simply copied 

from the input images to the output, according to 

the weight maps obtained using the luminance. The 

multi level fusion is performed only on the lumi-

nance. 

 

Luminance blending 

(multi-level fusion) 

Map 

creation 

Chrominance blending          

(single level mapping) 

Luminance 

Chrominance 

Maps  

Input 

image set 

 

Fig. 4. The main part of the EF algorithm. All processing is performed 

on the luminance, whereas the chrominance is simply copied from the 
input images. 

A) Adaptive selection and weight map creation 

This module locates the optimally exposed 

parts from the input images, and creates weight 

maps where the selection information is stored. 

The selection criteria are threshold based, namely, 

all the pixels from the OV image with luminance 

lower than threshold TH,OV, are selected as a con-

tent source for the fusion process. The rest of the 

pixels in the OV image are declared as white-satu-

rated, or near white-saturated. In the saturated ar-

eas, the matching pixels from the UN image are 

tested against threshold TH,UN, and all having lumi-

nance higher than threshold, are also selected as a 

content source for the fusion process. In some 

cases, the same locations can be white-saturated in 

the OV image, and black-saturated (underexposed) 

in the UN image. Such double saturation (DS), 

usually occurs when object movement is present in 

the scene, because the saturated moving object oc-

cupying certain scene location in one of the im-

ages, can reveal the saturated background at the 

same location in the other image. Because neither 

of the full resolution OV and UN input images 

does not contain usable data in the DS regions the 

pixels from the low resolution VF image are se-

lected as content source for those regions. Consid-

ering that the DS regions are usually relatively nar-

row regions present at the revealing edge of the 

moving object, the loss of resolution is often visu-

ally indistinguishable, and the benefit of the 

chrominance copying is noticeable, coloring the 

otherwise white or black DS regions.  

Concerning the occluding edge of a moving 

object, where a double non-saturated region would 

occur, the pixels from the OV image are given pri-
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ority in the selection. This decision is made based 

on the most common real world usage of the EF, 

where the darker object (properly exposed in the 

OV image) is in front of the brighter background 

(properly exposed in the UN image), e.g. photo-

graphing people against bright windows, door-

frames, or located in shadows. In the vice-versa 

scenario (bright object against dark background), 

usually the object employs some sort of added 

lightning (light emanating from the object itself, 

spotlight, or camera flash), making the difference 

in the lightning of the object and the background 

so high, that it is highly probable at least one of 

them would be (black or white) saturated in each 

of the input images.  

The thresholds TH,OV and TH,UN are adaptively 

calculated using the reconstruction of the camera 

response function (CRF), calculated as proposed in 

[2], by solving a system of linear equations, with a 

set of sample pixel values from matching locations 

in input images with known exposure times. To 

obtain the samples, a grid layered over the input 

images is used, leaving border margins of 1/8 of 

the image dimensions. 

 This yields samples evenly distributed across 

the images, representing the majority of the image 

content. Concerning the total number of samples, 

the higher number should represent the image sta-

tistics better, however, the experiments show that 

any scene would be well represented by a total 

number of 529 (23×23 grid) locations for pixels 

samples. The opportunity for calculation of the 

CRF is another benefit from introducing the VF 

image into the input image set. As can be seen in 

Fig. 5, the obtained CRFs are much more consis-

tent if the pixels from VF image are added in the 

mix. 
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Fig. 5. Calculated camera response functions for 5 image pairs 

or triplets captured with the same camera settings, (a) using 

only OV and UN images, (b) using OV, UN, and VF images. 

After obtaining the CRF for given input im-

age set, the threshold values are calculated as the 

maxima of the absolute second derivative of CRF, 

as in (9): 
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  (9) 

where DLL is the 8-bit digital luminance level 0–

255. 

B) Forward (in place) pyramid implementation 

In the proposed EF procedure, a multi-level 

fusion process is adopted, decomposing the input 

image set into a Laplacian pyramid [26]. If the de-

composition is performed in N pyramid levels, an 

input image G0 is decomposed into the members of 

the Gaussian part of the pyramid (G1, G2, …GN), 

representing the down-scaled versions of the input 

image, and into the members of the Laplacian part 

of the pyramid (D1, D2, …DN), representing the 

spatial activity and image details across the differ-

ent scales. The weight maps, generated with the 

adaptive selection criteria, are decomposed only 

into the Gaussian parts of the pyramids. At each 

pyramid level, the Laplacian parts of the input 

pyramids are fused into one pyramid, according to 

weight maps. The reconstruction of the obtained 

single pyramid generates the output image. The 

reconstruction of the Gaussian member at level L-1 

can be performed using the members from the up-

per level L according to (10). 

 LLL DGG +=↑− )(1  (10) 

where the operator ↑ represents the two step proc-

essing of the GL, including up-scaling and low pass 

filtering. Inductively replacing the equations from 

upper pyramid levels (10) can be rewritten in such 

way, which states that for the reconstruction of the 

original image G0 only the last member of the 

Gaussian pyramid part, and all the members of the 

Laplacian pyramid part are needed. In general case 

with N levels of decomposition, the reconstruction 

equation obtains the following form: 

 ( ) ( )1

0

1

N
i N

i N

i

−

=

 
= ↑ + ↑ 
 
∑G D G  (11) 

where the operator ↑
X
 designates X times consecu-

tive application of the operator ↑. 
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The expression in (11) states that the output 

image can be built in forward manner, incorporat-

ing into it each level of the fused pyramids, as it is 

calculated, discarding the necessity for keeping the 

results from all the decomposition levels for the 

reconstruction, which saves up a considerable 

memory space. 

C) Fast image scaling for the pyramid 

decomposition 

The qualitative and quantitative properties of 

the image decomposition into a Laplacian pyramid 

are highly dependent on the implemented low pass 

filtering. Also, the low pass filtering is the main 

bottleneck regarding the computing efficiency of 

the whole procedure. In the proposed work, two 

different low pass filters are implemented in the 

decomposition process, separate for the down-

scaling and the up-scaling operations. Both filters 

are designed to work using only additions and bi-

nary shifts on integer numbers. This design signifi-

cantly reduces the computational load of the proc-

essing, at the cost of a small amount of rounding 

error, visually unnoticeable in the output image. 

The first filter, integrated within the down-

scaling operation, performs averaging of all the 8-

connected neighbors of the processed element. For 

example, the element gL(m/2,n/2) in the decimated 

image GL on the L-th level of the Gaussian part of 

the pyramid, is calculated using 8 elements from 

the lower level image GL-1, as shown in (12). 
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The element gL-1(m,n) itself is excluded from 

the calculation, in order to obtain division by 8 in-

stead of division by 9, increasing the speed of the 

algorithm. The explained down-scaling is applied 

on every position with even numbered coordinates 

m and n in the image GL-1. 

The second filter is included into the up-

scaling operation, used for the creation of the im-

age ↑(GL), which is low pass filtered representation 

of the image GL-1. The image GL is up-scaled keep-

ing all the original columns, and introducing new 

ones between each two of them, valued as average 

of their closest two original neighbors. Then the 

process is repeated for the image rows. 

D) Incomplete pyramid and static scenes edge 

enhancement  

Considering the lower resolution VF image, 

compared to UN and OV, an incomplete pyramid 

blending is employed. The first few levels of the 

pyramid fusion are performed only on OV and UN 

images, without the data from the VF image. Ex-

ception to this is the chrominance copying in the 

base decomposition level, where up-scaled 

chrominance from the VF image is used. The low 

sensitivity of the human vision to the chrominance 

sharpness, allows the most rudimentary up-scaling 

methods to be used, without visible loss of detail. 

When the pyramid blending reaches the level 

where the decomposed input images are down-

scaled to resolutions near  to the resolution of the 

VF image, then this third image is introduced in 

the further process. Regarding the weight maps, 

since they are available in full resolution, they can 

be present in the decomposition at all the pyramid 

levels. If the memory load is more prioritized than 

the computational load, optionally instead of three, 

only two weight maps could be stored at the same 

time, since all three must be normalized to unity at 

each point, and at each level of decomposition. 

In the static scenes, a noticeable edge en-

hancement could be achieved simply changing the 

fusion criterion in the base pyramid level. Instead 

of map blending, the Laplacian member with 

higher absolute magnitude is selected for partici-

pation in the fused Laplacian member. This leads 

to increased sharpness of the final image. This 

scheme is performed under the condition that the 

number of DS pixels does not surpass 0.1% of the 

total number of image pixels. Such low number of 

DS pixels indicates a static scene and perfect spa-

tial alignment of the input images. If the number of 

DS pixels is higher than this threshold, the proce-

dure falls back to the standard map blending of the 

Laplacian members in the base pyramid level. 

E) The optimal number of pyramid decomposition 

levels 

Although this parameter is often neglected in 

the EF algorithms based on multi-level fusion, the 

height of the pyramid significantly affects the vis-

ual quality of the fused results. A decompozition in 

too few levels cannot build the interdependency 

between separate image parts, leading to visible 

luminance transitions among the image regions, 

known as halo artifacts. Contrary a decompozition 
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in too many levels causes a global averaging of 

image features at a higher pyramid levels. The ef-

fect could be an over-compensation of the lumi-

nance dynamic range, decreasing the contrast of 

the final output image and introducing de-satura-

tion of the colors.  

The optimal pyramid height for artifact free 

output image is different for various input images, 

and depends on the image contents and statistics. 

Hence, designing an autonomous algorithm for 

decision on the optimal number of decomposition 

levels is a challenging task. An empirically derived 

such algorithm is proposed in [22].  

In this work, the actual number of decompo-

sition levels is not used as a representative of the 

pyramid height, since it varies with the initial size 

of the image. A more convenient form of repre-

sentation is the resolution (number of rows: RG) of 

the last (highest) member in the Gaussian part of 

the pyramid. The experiments performed in [22] 

showed that for the best visual quality, the decom-

position should be executed at least up to the reso-

lution of RG = 8. 

When that level is reached, two parameters 

are considered as stopping criteria for the further 

decomposition. The first parameter is the image 

activity. High enough activity could mask the halo 

effect, and the pyramid decomposition could be 

stopped at lower level without concern about visi-

ble halo artifacts. Taking into the account that the 

luminance transitions of the image down-scaled at 

the level L, are well represented by the Laplacian 

member DL, the image activity at that level, ACTL, 

is defined as the absolute average of the DL. 

The second parameter to be considered is the 

smoothness of the level L Gaussian member of the 

weight map decomposition, GML. Smooth and uni-

form GML leads to uniform participation shares of 

the input images in the fused images at the ob-

served decomposition level.  Non-smooth GML 

with high difference elements leads to a fused im-

age at that decomposition level, in which some 

parts are built mainly or exclusively from the fea-

tures of only one of the input images, causing rela-

tively large luminance transitions among the re-

gions in the output image, or halo artifacts. In such 

case, the pyramid decomposition should continue 

to the next higher level, until a relatively smooth 

GML is obtained. 

The smoothness of GML is calculated testing 

its extreme values (minimum and maximum) 

against the adaptive interval [IL, IH]. If both ex-

tremes have values within the tested interval, then 

GML is smooth-order 2. If only one of the ex-

tremes is within the interval, then GML is smooth-

order 1. Otherwise, GML is non-smooth. The 

endpoints of the interval for pyramid level L de-

pend on the image activity, as in (13): 

[ ] [ ]1 1Level
,  ( ) ,  

L H V L H L HL
I I M ACT T ACT T

=
= − + + , (13) 

where TH1 is empirical threshold and MV is the 

maximum possible value of the elements in the 

weight map. 

Two criteria are tested for stopping the pyra-

mid decomposition: too high activity, or too 

smooth map. If the level RG = 2 is reached, the 

pyramid decomposition is stopped unconditionally. 

The RG = 1 resolution level is never achieved. For 

RG = 8 and RG = 4 levels the decomposition is 

stopped if ANY of the following three conditions 

is met:  

1) The map is smooth-order 2. 

2) The map is smooth-order 1   

AND    ACTL > TH3. 

3) ACTL > TH(L) 

The used threshold values are experimentally 

adjusted. For 8-bit luminance image their values 

are: TH1=225; TH3=11; TH(L)=15 for level RG = 8; 

and TH(L)=10 for level RG = 4. 

6. EXPERIMENTAL RESULTS 

A) Experimental setup 

The experimental validation of the perform-

ance of the proposed EF procedure, PROP, was 

executed in two ways, the quality test and the effi-

ciency test. The quality test is focused on grading 

the fused image appearance, by both visual and 

objective means. The efficiency test includes im-

plementation of the algorithm core on different 

mobile devices and measurement of the execution 

times. 

For the quality test, an EF image test collec-

tion available online [39], is used, which contains 

128 triplets of exposure bracketed images, cap-

tured with exposure biases of 0, –2 and +2 points. 

The image sets cover various usage scenarios, in-

cluding static or handheld camera, static or moving 

objects, indoor or outdoor scenes, objects of inter-

est near to, or far from the camera, images cap-

tured with magnification (zoom), etc. Also, differ-

ent statistical properties of the recorded scenes are 

included in the database: large flat surfaces, objects 
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with many details or prominent textures, surfaces 

with sky or water, regular geometric shapes, dif-

ferent image resolutions, etc. 

The usual time delay between capturing the 

consecutive images in one exposure bracketed set 

is around 400 milliseconds, making the movements 

of the camera or the movements of the objects in 

the scene easily noticeable.  

The triplets were provided as input sets (VF, 

UN and OV) for the proposed EF procedure. In 

order to simulate the view screen image VF, the 

zero-exposure-biased image from the triplet was 

down-scaled to a 1/4 resolution in each dimension. 

The obtained fused results were evaluated 

visually, and compared against 5 other algorithms 

generating 9 other fused results. The algorithm in 

[10] (LI), was the first choice, which is state-of-the 

art algorithm with broader usage in multi-focus 

and multispectral fusion in addition to the EF. This 

algorithm is inherently robust to moving objects in 

the scene. However, the proposed default values 

for the free parameters r1 = 45 and r2 = 7, (working 

well on image resolution of 512×512 pixels), are 

not suitable for higher image resolutions. Hence, 

two fused results are generated with this algorithm, 

LI45/7, using the default values for the free pa-

rameters, and LI100/16, using the values r1 = 100 

and r2 = 16. It should be noted that the second set 

of parameters (100/16), dramatically increase the 

computational load of the algorithm [10], due to 

filtering with a very large support sized filters. Of 

course, the time complexity of the guided filtering 

can be kept linear and independent on the filter 

size by using a table of summed areas [27]. How-

ever, this method rapidly increases the memory 

consumption because it includes creation of one 

table per each source image and per each weight 

map, equally sized with their image or map coun-

terparts, and with much higher bit-depth. For the 

method [27] to be used on five megapixel 8-bit 

input images (2592×1944) all the tables would 

have to use at least 31 bits per element, or four 

times more memory than the source images and 

weight maps themselves. 

The second algorithm for comparison is [6] 

(MER), which represents a milestone in the EF 

algorithms based on Laplacian pyramid decompo-

sition. This algorithm can accept both input sets 

containing 2 images OV and UN, (MER2), or con-

taining the whole triplet OV, UN and VF, 

(MER3). The third comparison was made using 

the commercial software Photomatix from HDR-

Soft [38], with all the user adjustable parameters 

set at their default values. This software was also 

tested with two (PMX2) or three (PMX3) input 

images. 

The fourth comparison is performed against 

the algorithm proposed in [8], which although 

computationally very demanding, includes ad-

vanced methods for compensating both the camera 

and the object motion in the process of image cap-

turing. Again, two or three input images are op-

tional, and the obtained results are denoted as 

SEN2 and SEN3. Finally, the last comparison is 

with the predecessor of the PROP, the algorithm 

[21] (KAR), which uses the same Laplacian pyra-

mid core as PROP, however, does not include the 

adaptive selection based on CRF, does not include 

the reduced motion vector set global motion com-

pensation procedure, and works without VF image 

data. 

For all of the results that are generated using 

three input images (MER3, PMX3, SEN3), the full 

resolution VF image was provided. For LI and 

MER algorithms, that do not embed image align-

ment part, the reduced vector set procedure ex-

plained above was used as a preprocessing tool. 

For KAR algorithm, the image alignment part that 

works only with translational displacements disen-

gaged and replaced with the reduced MV set GMC 

procedure for the experiment. 

B) Quality test: visual comparison 

Few representative examples of the exposure 

bracketed triplets of images are shown in Fig. 6. 

The explanations of their statistical significances 

for various usage scenarios are placed in Table 2. 

All examples are 5 MP images. 

 

 
a) b) 

 
c) d) 

 
e) f) 

 
g) h) 

Fig. 6. Eight representative cases of exposure bracketed input 

image sets. 
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T a b l e  2  

Descriptions of the presented examples 

Ex. 
Camera 

mobility 

Object 

motion 

Comment 

 

(a) Static No Outdoor, large flat surfaces  

(b) Static  No Indoor, very high radiance dynamic 

range 

(c) Handheld No Captured using magnification (zoom) 

(d) Static Yes Total displacement of a rigid object 

(e) Static Yes Fractional displacement of a rigid 

object 

(f) Static Yes Z-axis displacement of a rigid object 

(g) Handheld Yes Natural, non-rigid motion, near to 

camera 

(h) Handheld Yes Natural, non-rigid motion, far from 

camera 

 

The fused results using a total of ten different 

methods are shown in Fig. 7. The results obtained 

with the proposed EF procedure are placed in the 

bottom row. For better preview, the reader is en-

couraged to examine the electronic form of the ex-

amples, available for download at [39]. In visual 

terms, the proposed EF procedure obviously yields 

the best comparative results. The LI scheme, 

whereas working well with lateral and fractional 

object displacements, suffers from total displace-

ments or z-axis displacements. Also a prominent 

halo artifacts are present in LI45/7, due to the rela-

tively small filter support compared to the image 

size. As can be seen in the LI100/16 result, the 

halo artifacts can be decreased with increment of 

the r1 and r2 parameters, however, a procedure for 

adjustment of the parameter values according to 

image content or size is not provided in [10]. The 

MER method produces fused results with high vis-

ual quality in the static scenes, however, its quality 

degrades significantly under dynamic conditions, 

and also, it does not include its own global align-

ment part. The commercial software requires at 

least three full resolution input images to produce 

reasonable output image (the PMX2 result is below 

any acceptable quality), yet it struggles with mov-

ing objects, too. Ghosting artifacts are noticeable 

in all three results featuring rigid-object motion. 

SEN2 and SEN3 are compensating the global and 

local motion very well (the different object posi-

tion is a result of different input image being cho-

sen as referent image), however, in addition to its 

immense complexity, this algorithm outputs true 

HDR images, which have to be tone mapped af-

terwards, process that requires user intervention, in 

order to adjust the proper luminance on the regions 

of interest (the face of the toy Santa Clause in the 

example, which is too dark). Finally, the KAR al-

gorithm suffers from ghosting artifacts and discol-

orations in the moving object scenarios. Although 

it retains more vivid colors than PROP in some of 

the cases (the sky, the green flora...), that is result 

of a generally darker fused images, consequence of 

the non-adaptive selection thresholds. 

C) Quality test: Numerical comparison 

Along with visual evaluation, several numeri-

cal objective fusion metrics are employed to test 

the proposed EF procedure. The used metrics are 

the gradient based QpABF [33], the structure based 

QY [35], the information theory based QMI [34], the 

phase congruency based QP [36]  and visual infor-

mation fidelity based QV [37].  

The achieved numerical scores averaged 

across all of the tested images are shown in Figure 

8, each metric values normalized to the highest 

scoring result. Among 10 tested methods, the pro-

posed EF procedure is top 4 according to the gra-

dient based metric QpABF, and top 3 according to 

the rest four metrics. In terms of the metric QV, the 

proposed EF procedure is considerably better than 

the competition. Overall, if scores from all the met-

rics are averaged, the proposed EF procedure is 

tied for the best score with the LI45/7 method, Ta-

ble 3. However, the LI45/7 method is visually infe-

rior to the proposed procedure. The high objective 

grades it receives are mainly the consequence of its 

robustness to moving objects in the scene, and 

preservation of the salient features in the input im-

ages. The presence of the severe halo artifacts in 

the LI45/7 results, represented by relatively slow 

luminance transitions in the image, is not consid-

ered by the quality metrics, which are based on 

salient features, such as edges, corners, structure or 

contours, generally more rapid luminance transi-

tions. 

T a b l e  3  

Overall Averaged Scores from all Quality Metrics 

(%) 

LI45 LI100 MER2 MER3 PMX2 PMX3 SEN2 SEN3 KAR PROP 

96 95 93 85 83 82 95 93 90 96 
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LI100/16 

 
MER2 

 
MER3 
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KAR 

 
PROP 

Fig. 7. Visual comparison of the performances of different algorithms. Examples by columns, algorithms by rows 

 
Fig. 8. Quality scores of the compared results, normalized to the highest 
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D) Efficiency test: Execution Times 

In order to test the computational efficiency 

of the proposed EF procedure, the core of the algo-

rithm (only the multi-level fusion part) was im-

plemented in JAVA/C and compiled as an Android 

application. The application was tested on several 

mobile devices of different quality class, computa-

tional performances, and price-range. The execu-

tion times obtained for input images of VGA sizes 

are shown in Table 4. As it can be seen from the 

Table 4, all the execution times are shorter than 0.3 

seconds, and as short as 60 milliseconds. Hence, 

the computationally most demanding part of the 

algorithm, its multi-level fusion core, works in ac-

ceptable wait time implemented on any modern 

mobile device. 

T a b l e  4  

Algorithm Core Performance on Various mobile 

Devices 

Model 
CPU 

(GHz) 

RAM 

(Bytes) 

Processing times  

(ms) 

min max avg 

Sony Xperia SP 1.7 (dual) 1 G 57 64 60.5 

Samsung Galaxy 

S3 
1.4 (quad) 1 G 101 115 105.5 

Lenovo A850 1.3 (quad) 1 G 135 156 142.5 

Sony Ericsson 

Live 
1  

512 

M 
181 210 194.2 

Samsung 

P3113(tablet) 
1 (dual) 1 G 187 220 201.6 

HTC Desire 300 1 (dual) 
512 

M 
191 226 208.3 

HTC Desire X 1 (dual) 
768 

M 
212 262 229.9 

HTC Desire 200 1  
512 

M 
254 309 277.7 

7. CONCLUSIONS 

A complete and high quality exposure fusion 

procedure was presented in this paper, designed 

specifically for usage on a mobile platform de-

vices. Several novel solutions are introduced, 

among them, accelerated and efficient computing, 

automatic calculation of the optimal fusion pa-

rameters without any user intervention, viewfinder 

datastream utilization, reduced motion vector set 

for input image alignment, and overall decision for 

the necessary of the fusion process. 

The experimental results rate the presented 

procedure very high among the state-of-the art 

competition, both in the quality and in the effi-

ciency terms. 

Further research can be made towards a hard-

ware-related procedure optimization, and device-

specific implementation, e.g., a dedicated DSP pro-

cessors available in the modern mobile devices can 

be utilized in the down-scaling, up-scaling and the 

filtering operations present in the procedure, which 

can render the whole procedure even more effi-

cient. 
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