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A b s t r a c t: Large graphs, also known as networks, are often used to represent different natural or human made 

structures. In many of these networks the phenomenon of self-similarity was detected. Here we present a deterministic 

method for construction of a class of self-similar networks. The elements of this class are obtained by a vertex-transitive 

graphs, and an iterative construction procedure implemented on these graphs. This procedure provides the property of 

self-similarity in the obtained network. 
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КЛАСА САМОСЛИЧНИ МРЕЖИ 

A п с т р а к т: Големите графови (или мрежи) често се користат за визуелно претставување на различни 

природни мрежи или мрежи креирани од човекот. Кај многу од овие мрежи се забележува феноменот на само-

сличност. Во овој труд е даден детерминистички метод за конструкција на класа самослични мрежи. Еле-

ментите од оваа класа се добиени од транзитивни графови со примена на итеративна конструктивна постапка. 

Овој конструктивен метод го обезбедува својството на самосличност на добиената мрежа. 

Клучни зборови: графови; мрежи; самосличност 

1. INTRODUCTION 

A network (or graph) is simply a collection of 

connected objects (by some property). That is why 

the saying “A picture says more than a thousand 

words” is the best descriptions why graphs, also 

known as networks, are one of the most common 

model in modern science for describing deferent 

natural or a human-made structures. Using graphs 

as a visual representation of the data one can gain 

actionable insights and make better data driven de-

cisions.  

The interest in studying networks correlated 

with complex system like society, world wide web, 

statistical physics, particle physics, computer sci-

ence, electrical engineering [1, 2], biology, econom-

ics, finance etc., was mainly motivated by the pub-

lication of Watts and Strogatz [3] on small-world 

networks, and by Baràbasi and Albert [4] on scale-

free networks. 

This approach gives an abstract perspective to 

the problem: electrical networks can be considered 

regardless of the electric power; social networks can 

be considered regardless to religion, political orien-

tation, etc. At the same time weights can be assigned 

to the links for deeper more complex relations in the 

network, as well as parallel links or loops. Still, in 

practice it turns out that inspite the wild variety of 
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networks, i.e. complex systems, most of them fol-

low some universal way of organization [5].  

It is observed that many real networks have 

small average path length, and small diameter com-

pared to the number of nodes in the networks. In 

small world network most nodes are not neighbors 

of one another, but most nodes can be reached from 

any other node by a small number of steps. This phe-

nomenon is discovered by Watts and Strogatz [3] at 

the end of the last century, and it is known as small 

world network.  

Most biological and social networks show dif-

ferent properties. Namely, these networks have 

strong local clustering, or the neighbors of a given 

node are neighbors as well. High clustering coeffi-

cient suggests that nodes that have common neigh-

bor are more likely to be neighbors than any other 

randomly chosen nodes. On the other side, human-

made networks like power grid, or networks repres-

senting some electronic circuits, have small cluster-

ing coefficient.  

Another important network feature is the de-

gree distribution. If the degree distribution obeys a 

power low, it is said that the network is scale-free. 

Another big class of networks have exponential de-

gree distribution. Many networks were reported as 

scale free, but the evidence often remains inconclu-

sive [6]. 

Among other common properties, it was 

shown [7] that real networks share another feature, 

self-similarity. This property is also observed in bi-

ological networks and some human made networks. 

In order to study the properties of real net-

works, a numerous models have been proposed. 

Most of those models were stochastic [4], which re-

quires probabilistic techniques to estimate the pa-

rameters of the studied network. However, a deter-

ministic method turns to be useful, and its advan-

tages are obvious; the parameters of the network can 

be express exactly and analytically. Dorogovtsev et 

al. [8] used mathematical objects and method to 

construct a deterministic network, and called it 

pseudo-fractal network. Their work was extended 

by Comellas and his colleagues [9, 10], and then by 

Zhang et al. [11, 12]. 

Here we give generalization of the model pre-

sented in [13]. In this article we present a determin-

istic method for construction of a class of self-simi-

lar networks. The elements of this class are obtained 

by vertex-transitive graphs, and an iterative con-

struction procedure implemented on these graphs. 

This procedure is designed in a way that provides 

the property of self-similarity in the obtained net-

work. Clearly, the properties of the obtained net-

work will correlate with the properties of the start-

ing graph. 

2. SELF-SIMILAR NETWORKS 

A. Basic definitions 

In this section we first introduce the basic def-

initions in graph theory, and later we introduce 

some measures important for networks [14].  

Let 𝐺 = (𝑉, 𝐸) be a graph representing a net-

work. The elements of 𝑉are called vertices, and the 

elements of 𝐸 are edges of the graph 𝐺. Usually 

when networks are considered, vertices are called 

nodes and edges are called links. The order and size 

of a network (graph) are the cardinality of 𝑉and 𝐸 

respectively. 

Two nodes 𝑢 and 𝑣 are adjacent if they share 

a common link (edge). The degree of a node 𝑣 is 

denoted by deg (𝑣), and equals the number of nodes 

adjacent to 𝑣. The minimal degree in a graph 𝐺 is 

denoted by δ, and the maximal degree by ∆. If  

∀ 𝑣 ∈ 𝑉, deg(𝑣) = 𝑘, 𝑘 ∈ 𝑁, then the graph 𝐺 is 

called 𝑘 − regular. The distance between two nodes 

𝑢 and 𝑣 in 𝐺, is the length of the shortest path be-

tween them. The distance between the nodes𝑢 and 

𝑣 in the graph 𝐺 is denoted by dist𝐺(𝑢, 𝑣), or 

dist(𝑢, 𝑣) if there is no place for confusion. The 

graph diameter is the maximal distance between any 

pair of nodes in a graph, i.e. 

diam(𝐺) = max{𝑑𝑖𝑠𝑡 (𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝑉(𝐺)}. 

Graph without loops and parallel links is called 

simple graph. A complete graph on 𝒏 nodes, 𝑲𝒏, is 

a simple 𝒏 − 𝟏 -regular graph. A cycle on 𝒏 nodes, 

𝑪𝒏, is a simple 2-regular graph.  

An automorphism, 𝑓, of graph 𝐺 is a bijection 

𝑓: 𝑉(𝐺) → 𝑉(𝐺) such that any two vertices 𝑢 and 𝑣 

of 𝐺 are adjacent if and only if 𝑓(𝑢) and 𝑓(𝑣) are 

adjacent. A graph 𝐺 is vertex-transitive [14], also 

sometimes called node symmetric [15], if for any 

two nodes 𝑢, 𝑣 ∈ 𝑉(𝐺) there is an automorphism 

𝑓: 𝑉(𝐺) → 𝑉(𝐺) such that 𝑓(𝑢) = 𝑣. In other 

words, a graph is vertex-transitive if its automor-

phism group acts transitively upon its vertices. A 

graph is vertex-transitive if and only if its comple-

ment is vertex-transitive as well [16]. Cycles, com-

plete graph, bipartite complete graphs 𝐾𝑛,𝑛, Peter-

sen graph etc. are all vertex-transitive graphs. 
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B. Clearly, all vertex-transitive are regular 

graphs, but not necessarily vice versa 

There are different measures that can be used 

for analyzing complex networks [3, 4, 17]. Here, we 

will focus on the degree distribution, clustering co-

efficient, and the diameter of the graph. 

Let 𝑷(𝒌) be the fraction of nodes of degree 

 𝒌 in the network, аnd the order of the network. 

Simply 𝑷(𝒌) can be interpreted as the probability 

that a node has degree 𝒌.The degree distribution is 

the distribution of 𝑷(𝒌) over all 𝒌. The cumulative 

distribution, 𝑷𝒄𝒖𝒎(𝒌), is the number of nodes with 

degree at least  𝒌 over the total number of nodes, 

i.e.,  

𝑷𝒄𝒖𝒎(𝒌) = ∑ 𝑷(𝒌).

𝒌

𝒊=𝟎

 

The clustering coefficient, 𝐶(𝑣), of a node 𝑣 of 

degree deg(𝑣) in a graph (network) 𝐺 is defined in 

[10] as the number of triangles 𝐞𝑣 with one node 𝑣 

over the number of all pairs adjacent nodes to 𝑣, or 

𝐶(𝑣) =
2 𝐞𝑣

deg(𝑣)(deg(𝑣)−1)
. 

The clustering coefficient is a measure of a de-

gree to which nodes in a graph tend to cluster to-

gether [10]. 

3. FRACTAL NETWORKS 

A. Motivation – construction of fractal sets  

The aim of this paper is to construct a network 

with self-similar properties. In order to do so, we 

use similar technique as for construction of fractal 

sets. Iterated functional systems, or shortly IFS, are 

one possible method for fractal set construction 

[18]. For all terms not defined in this article consult 

Barnsley [18]. Formally iterated functional systems 

are finite sets of contractive mappings 𝑓𝑖 on comple-

te metric space 𝑋, i.e. 

{𝑓𝑖: 𝑋 → 𝑋|𝑖 = 1,2, … , 𝑛}, 𝑛 ∈ 𝑁. 

The IFS defines Hutchinson operator as 

𝐻(𝑆) = ⋃ 𝑓𝑖(𝑆)𝑛
𝑖=1 , where 𝑆 ⊂ 𝑋 is non-empty 

compact set. Attractor of the iterated functional sys-

tem is the unique nonempty compact set 𝐴 such that 

the following holds: 

𝐴 = ⋃ 𝑓𝑖(𝐴)

𝑛

𝑖=1

. 

Hence, the attractor 𝐴 is the fix set to the 

Hutchinson operator. Even more, for every non-

empty compact set 𝑆 holds,  

𝐴 = lim
𝑁→∞

𝐻𝑜𝑁(𝑆), 

where 

 𝐻𝑜0(𝑆) = 𝑆, and 𝐻𝑜𝑖(𝑆) = 𝐻 (𝐻𝑜(𝑖−1)(𝑆)) , 

                     𝑖 = 1,2, … , 𝑁.  

Figure 1 shows three iterations of an IFS with 

five contractions. The starting set is a square. The 

image in the right top corner is obtained after the 

first iteration, the image in the left bottom corner is 

obtained after two iterations. The attractor is shown 

in the right bottom corner.  

The iterated functional systems allow fractals 

with condensation sets [18]. 

 

Fig. 1. The first three iterations of iterated functional system 

(with five mappings) applied on a square, and its attractor 

(bottom right) 

B. Network construction 

The construction method described here is 

based on vertex-transitive graphs. Let 𝐺0 be the 

starting graph. In addition, assume that 𝐺0 is vertex-

transitive graph on 𝑛0 nodes, and 𝑚0 edges. As 

noted in the introduction, this graph is a regular 

graph, so let the degree of each vertex of 𝐺0 be de-

noted by r. Their relation is obtained by Hand-shake 

Lemma [14] and it reads as 2𝑚0 = 𝑛0𝑟. We denote 

the diameter of 𝐺0 by d.  
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The networks that we are aiming to construct 

will be obtained in several iteration steps described 

below. Let 𝑖 and 𝑗 be non-negative integers 𝑗 ≤ 𝑖, 
and in the following text will refer to the iteration. 

i. The graph 𝐺1 is obtained when each node of 

𝐺0 is identified with a node of every new 𝑎 copies 

of 𝐺0, 𝑎 ∈ 𝑁.  

ii, The graph 𝐺𝑗 is obtained when each node of 

𝐺𝑗−1 is identified with a node of every new 𝑎 copies 

of 𝐺0. 

The network obtained in the 𝑗-th iteration, 𝐺𝑗, 

is constructed with consecutive applications of ii. 

Observe that due to vertex-transitivity of 𝐺0 the ob-

tained graphs  𝐺𝑗, 𝑗 ∈ 𝑁 , are unique up to isomor-

phism.  

For simplicity 𝑛𝑗, 𝑚𝑗 ,  and 𝑑𝑗 denote the num-

ber of nodes, edges and the diameter of 𝐺𝑗, respec-

tively.  

Figures 2–4 show a network obtained as de-

scribe above. The starting graph is a complete graph 

on 4 nodes, 𝐺0 = 𝐾4, and 𝑎 = 1  (Figure 2). The 

graph obtained after one iteration is presented in 

Figure 3, and the one obtained after two iterations is 

shown in Figure 4. 

 

Fig. 2. The starting graph 𝐾4, complete graph on 4 nodes 

 

Fig 3. The graph obtained after the first iteration with  

starting graph 𝑲𝟒, and 𝒂 = 𝟏 

 
Fig. 4. The graph obtained after the first iteration, iteration 

with starting graph 𝐾4, and 𝑎 = 1 

C. Networks propertis 

Our next interest is the number of nodes and 

edges in the network 𝐺𝑖 , i.e. its size and order. 

Number of nodes (size) 

From the constructive rules described above, 

one obtains 

|𝑉(𝐺𝑖)| = |𝑉(𝐺𝑖−1)| + 𝑎|𝑉(𝐺𝑖−1)|(|𝑉(𝐺0)| − 1) 

= (1 + (𝑛0 − 1)𝑎)|𝑉(𝐺𝑖−1)|.        

Hence, we have the following recursion for the 

number of nodes 

𝑛𝑖 = (1 + (𝑛0 − 1)𝑎)𝑛𝑖−1,     𝑖 ≥ 1. 

For simplicity let 𝑝 = 1 + (𝑛0 − 1)𝑎 . Now, 

the solution of the last relation is 

 𝑛𝑖 = 𝑝𝑖𝑛0, 𝑖 ≥ 1. (1) 

Number of edges (order) 

Similarly like in the case for the number of 

nodes, we have 

|𝐸(𝐺𝑖)| = |𝐸(𝐺𝑖−1)| + 𝑎|𝑉(𝐺𝑖−1)||𝐸(𝐺0)|. 

Using (1) we get the recursive relation  

 𝑚𝑖 = 𝑚𝑖−1 + 𝑎𝑚0𝑛0𝑝𝑖. 

Hence 

𝑚𝑖  = 𝑚0(1 + 𝑎𝑛0𝑝 + 𝑎𝑛0𝑝2 + ⋯ + 𝑎𝑛0𝑝𝑖). 

  (2) 



 A class of self-similar networks  87 

Спис. Електротехн. Инф. Технол. 4 (1–2) 83–90 (2019) 

Degree distribution 

Note that all nodes introduced in the same iter-

ation have the same degree. Therefore it is im-

portant to consider numbers |𝑉(𝐺𝑗)| − |𝑉(𝐺𝑗−1)| 

for 𝑠 positive integer. Namely, those numbers are 

precisely the number of nodes added in 𝑗-th itera-

tion. 

Let 𝐺0 and 𝐺𝑖, 𝑖 > 0, be the starting and the 

final graph using the above construction, respectti-

vely. Because of (1)  

|𝑉(𝐺𝑗)| − |𝑉(𝐺𝑗−1)| = 𝑛0𝑝𝑗−1(𝑝 − 1), 𝑖 ≥ 1, 

and let denote the degree of all these nodes by 𝑟𝑖. 

Clearly, 

deg(𝑣) = 𝑟 

for a all nodes in the set  𝑉(𝐺𝑖)\𝑣(𝐺𝑖−1), 

deg(𝑣) = 𝑟 + 𝑎𝑟 

for all nodes in the set 𝑉(𝐺𝑖−1)\𝑉(𝐺𝑖−2), etc. 

Observe that 

𝑉(𝐺𝑖) = ⋃ 𝑉(𝐺𝑗)\𝑖
𝑗=1 𝑉(𝐺𝑗−1) ∪ 𝑉(𝐺0). 

Hence, previous discussion implies the for-

mula for the degree of the nodes: for  

𝑣 ∈ 𝑉(𝐺𝑗)\𝑉(𝐺𝑗−1), 0 ≤ 𝑗 ≤ 𝑖, 

𝑟𝑗 = deg(𝑣) = 𝑟 + (𝑖 − 𝑗)𝑎𝑟. 

In order to determine the cumulative degree 

distribution, 𝑃𝑐𝑢𝑚(𝑘), we have to count the nodes 

with degree at least 𝑘 over the total number of nodes. 

A node will have a degree at the least 𝑘 if it is intro-

duced in the 𝑗-th iteration, and  

𝑗 ≤ 𝑖 −
𝑘−𝑟

𝑎𝑟
 . 

Now, according to [19], the cumulative degree 

distribution is the total number of nodes in 𝐺𝑗, where 

𝑗 = 𝑖 −
𝑘−𝑟

𝑎𝑟
, divided with the number of noted in 𝐺𝑖. 

Hence we infer  

 𝑃𝑐𝑢𝑚(𝑘) =
𝑛𝑗

𝑛𝑖
=

𝑛0𝑝𝑗

𝑛0𝑝𝑖 = 𝑝𝑗−𝑖 = 𝑝− 
𝑘−𝑟

𝑎𝑟 . (3) 

Equation (3) shows that the network con-

structed in this manner has exponential degree dis-

tribution. 

Average degree 

In most real networks there are small number 

of nodes that are connected with most of the nodes 

in the network, these are the nodes of high degree; 

and there is large number of nodes connected with 

very few nodes, probably with some of the nodes 

that are connected with most of the nodes. In the as-

pect of graph theory, most real networks have small 

number of nodes with high degree while there are 

large number of nodes with small degree. This char-

acteristic of the real networks results with small av-

erage degree. Recall that in the considered network, 

the nodes introduced in the same iteration have 

same degree and the degree of the nodes introduced 

in 𝑗-th iteration is rj. Clearly 𝑟𝑖 = 𝑟, and 

𝑟𝑗 =  𝑟 + (𝑖 − 𝑗)𝑎 𝑟,      0 < 𝑖 ≤ 𝑗. 

Therefore the average degree of the network 

can be calculated as follows: 

deg𝑎𝑣(𝐺𝑖) =
1

𝑛𝑖 
∑ 𝑛𝑗

′𝑟𝑗 =

𝑖

𝑗=0

 

=  
1

𝑛𝑖
(𝑛0

′ 𝑟0 + 𝑛1
′ 𝑟1+. . . +𝑛𝑖

′𝑟𝑖) = 
𝑟

𝑛𝑖
 (𝑛0(1 + 𝑖𝑎) + 

   +  𝑝𝑎(𝑛0 − 1) ∑ 𝑛0
𝑗−1(1 + (𝑖 − 𝑗)𝑎)

𝑖

𝑗=1

) = 

=
𝑟

𝑝𝑛0
𝑖+1 + 𝑝𝑛0

𝑖
(𝑎𝑝𝑛0

𝑖+1 + (1 − 𝑎𝑝)𝑛0
𝑖 + 

    +(1 + 𝑖𝑎)𝑛0
2 − (𝑎𝑝 + 𝑖 + 1 + 𝑖𝑎)𝑛0 − 1 + 𝑎𝑝). 

From the last relation it is clear that the average 

degree tends to 

𝑎 (𝑟 −
1

𝑛0 + 1
) +

1

𝑝(𝑛0 + 1)
 

as the number of iterations 𝑖 tends to infinity. 

Diameter 

Most of the real life network, share a common 

property, namely, most of these networks are “small 

world”. For a network 𝐺 is said that it is a small 

world [3] if its diameter is at most  log |𝑉(𝐺)|. 

Next, we determine the diameter of the cons-

tructed network. In order to determine the diameter 

of the network obtained after 𝑖  iterations, we use the 

property of self-similarity of the network. Recall 

that the diameter of the starting graph 𝐺0 is 𝑑, and 

the fact that this graph is vertex-transitive. The 
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graph obtained in after the first iteration, 𝐺1 has di-

ameter 3𝑑. Due to the self-similarity property of the 

considered network we get that  

diam(𝐺𝑖) = diam(𝐺𝑖−1) + 2 diam(G0), for  𝑖 ≥ 1.  

  (4) 

By equation (4) we infer  

 diam(𝐺𝑖) = (2𝑖 + 1)𝑑,    𝑖 ≥ 0. (5) 

The last equation suggests that the diameter of 

the obtained network grows linear with the number 

of iterations. The diameter of the network in terms 

of the number of vertices is given in the next relation 

diam(𝐺𝑖) = (2
ln 𝑛𝑖 − ln 𝑝

ln 𝑛0
+ 1) 𝑑, 

or 

diam(𝐺𝑗) ∼ ln 𝑛𝑗.  

Hence, this construction method results with a 

network that is small world. 

Clustering coefficient 

Our aim in this subsection is to determine the 

average clustering coefficient of the network. By 

definition 

𝐶𝑎𝑣(𝐺𝑖) =
1

𝑛𝑖
∑ 𝐶(𝑣)

𝑣∈𝑉(𝐺𝑖)

, 

where 𝐶(𝑣) denotes the clustering coefficient of the 

node 𝑣. We start with calculating the clustering co-

efficient of the node 𝑣𝑗 added in the 𝑗-th iteration. 

Since the graph 𝐺0 is vertex-transitive, all 

nodes 𝑣 have the same number of triangles (conta-

ining the node 𝑣), later on denoted with 𝑡0.The same 

reasoning holds for all the nodes added in each iter-

ation. Recall that the graph 𝐺𝑖 is constructed by 

identifying each node of 𝐺𝑖−1 with exactly one node 

of 𝑎 copies of 𝐺0. This construction adds new trian-

gles only among newly added nodes, to be more pre-

cise, only among nodes from the same copy of 𝐺0, 

but does not create new triangles between nodes in 

𝑉(𝐺𝑗−1) and 𝑉(𝐺𝑗)\𝑉(𝐺𝑗−1). Now, let consider the 

number of triangles, 𝑡𝑗, containing a node 𝑣 (node 

added in 𝑗-th iteration) in the network 𝐺𝑖, 𝑖 ≥ 𝑗. The 

degree of 𝑣 is 𝑟𝑗 = 𝑟 + (𝑖 − 𝑗)𝑎𝑟, hence the node 𝑣 

is a node in 1 + (𝑖 − 𝑗)𝑎 subgraphs of 𝐺𝑖 isomor-

phic to 𝐺0. Now, it is clear that the number of trian-

gles with one vertex in 𝑣 equals  

𝑡𝑖 = (1 + (𝑖 − 𝑗)𝑎)𝑡0.  

This implies the clustering coefficient of the 

node 𝑣, i.e.,  

𝐶(𝑣) =
2 (1+(𝑖−𝑗)𝑎)𝑡0

𝑟𝑗(𝑟𝑗−1)
=

2𝑡0

𝑟(𝑟+(𝑖−𝑗)𝑎𝑟−1)
 . 

For the 𝑖-th iteration from 𝐺0 one obtains a 

graph 𝐺𝑖, and the clustering coefficient of the net-

work is as follows: 

𝐶𝑎𝑣(𝐺𝑖) =
1

|𝑉(𝐺𝑖)|
∑ 𝐶(𝑣)

𝑣∈𝑉(𝐺𝑖)

. 

For easier calculations we denote with 𝑣𝑗 a 

node added the 𝑗-th iteration. The number of such 

nodes is 𝑛𝑗
′. Now, the clustering coefficient of the 

network 𝐺𝑖, 𝐶𝑎𝑣(𝐺𝑖) transforms to  

𝐶𝑎𝑣(𝐺𝑖) =
1

𝑛𝑖
∑ 𝑛𝑗

′𝐶(𝑣𝑗) =

𝑖

𝑗=0

 

=
2𝑡0

𝑟𝑝𝑖
(

1

𝑟 + 𝑖𝑎𝑟 − 1
+ ∑

(𝑝 − 1)𝑝𝑗−1

𝑟 + (𝑖 − 𝑗)𝑟𝑎 − 1
) .

𝑖

𝑗=1

 

For further calculations we introduce a new se-

quence  

𝑔𝑖 = ∑
𝑝𝑗−1

𝑟 + (𝑖 − 𝑗)𝑟𝑎 − 1
.

𝑖

𝑗=1

 

Our claim is that this is bounded and mono-

tonic sequence of reals which would imply that the 

sequence {𝐶𝑎𝑣(𝐺𝑖)}𝑖=1
∞  is convergent. Trivial com-

putation gives the relation 

𝑔𝑖+1 =
1

𝑝𝑖+1

1

𝑟+𝑖𝑎𝑟−1
+ 𝑔𝑖 , 

which means that the sequence {𝑔𝑖} is monoton-

ically increasing. Further more 

𝑝𝑖−1

𝑝𝑖(𝑟 − 1)
≤ 𝑔𝑖 ≤

1

𝑝𝑖
∑

𝑝𝑖−1

𝑟 − 1

𝑖

𝑗=1

 

or 

1

(𝑟−1)𝑝
≤ 𝑔𝑖 ≤

1

(𝑟−1)(𝑝−1)
(1 −

1

𝑝𝑖) ≤
1

(𝑟−1)(𝑝−1)
, 

i.e. the sequence {𝑔𝑖} is bounded.  

Finally  

2𝑡0

𝑟𝑝𝑖

1

𝑟 + 𝑖𝑎𝑟 − 1
+

2𝑡0(𝑝 − 1)

𝑟(𝑟 − 1)𝑝
≤ 𝐶𝑎𝑣(𝐺𝑖) ≤ 

≤
2𝑡0

𝑟𝑝𝑖

1

𝑟+𝑖𝑎𝑟−1
+

2𝑡0

𝑟(𝑟−1)
 . 

The sequence {𝐶𝑎𝑣(𝐺𝑖)}𝑖=1
∞  converges, and the 

limit, denoted with 𝐶, satisfies the estimate  
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𝑡0

(
𝑟
2

)

𝑝−1

𝑝
≤ 𝐶 ≤

𝑡0

(
𝑟
2

)
 .  

Observe that when 𝑛0 → ∞ or 𝑎 → ∞, then 

𝑝 → ∞ as well. Hence, we can conclude that graphs 

obtained with the procedure described in this article, 

from graph 𝐺0 with large number of nodes or by 

adding large number of copies of 𝐺0 in every itera-

tion results with 𝐶 arbitrary close to 
𝑡0

(
𝑟
2

)
. 

CONCLUSION REMARKS 

This paper is a continuation of the paper [13]. 

In order to give more freedom in the modelling of a 

network with wanted properties, here the starting 

graph is a vertex-transitive graph. At the same time 

we allow faster growth of the network, as 𝑎 ∈ 𝑁 

copies of the starting graph can be added to each 

node in every iteration. The properties of the result-

ing network, are closely correlated to the properties 

of the starting graph.  

The obtained network is planar if and only if 

the starting graph 𝐺0 is planar. Even more the net-

work is outer planar if the same holds for 𝐺0. The 

number of nodes, as well as the number of links 

grows exponentially in time, i.e. iteration (see equa-

tions (1) and (2)).  

The network 𝐺𝑖 does not inherit the vertex-

transitivity, edge-connectivity and vertex-connec-

tivity of 𝐺0. The graph 𝐺0 is vertex-transitive and 𝑟-

regular graph, therefore the edge-connectivity of 𝐺 

is equal to the degree 𝑟, while the vertex-connectiv-

ity will be at least 2(𝑟 + 1)/3 [21]. Still, the net-

work 𝐺𝑖 is not vertex-transitive, not even regular. 

The minimal degree of 𝐺𝑖 is 𝑟, while ∆ = 𝑟 + 𝑖𝑎𝑟. 

The network 𝐺𝑖 has a vertex connectivity 1, and 

edge connectivity 𝑟. 

The constructed network has many features 

similar to real life networks. This network has ex-

ponential degree distribution (3). This property is 

based on the fact that the degree of each node grows 

linear in time. The exponential degree distribution 

is a common feature of many real life complex net-

works.The average degree of the network is  

𝑎 (𝑟 −
1

𝑛0+1
) +

1

𝑝(𝑛0+1)
,  

i.e. it depends on the starting graph and on the con-

struction method. Still, as the number of iterations 

tends to infinity, the average degree of the networks 

is small. If the starting graph is big (has large num-

ber of vertices) or 𝑎 is big, then the average degree 

is approximately 𝑎𝑟. In this network there are sev-

eral nodes of high degree, incident with a lot of 

nodes of small degree. The nodes of small degree 

tend to be incident with high degree nodes. The con-

sidered network is a “small-world” as its diameter 

grows linear in time and it is a logarithmic function 

of the network size.  

As far as the clustering is concerned, this con-

struction gives a lot of freedom. The clustering co-

efficient of the network 𝐺𝑖 is approximately 
𝑡0

(
𝑟
2

)
, 

where 
𝑛0𝑡0

3
 is the number of triangles in the starting 

graph 𝐺0, and 𝑟 is the degree of the nodes in 𝐺0 (as 

it is regular). So, if the tendency is to construct a 

network with low clustering coefficient, one can 

chose a starting graph with small number of trian-

gles (small 𝑡0) compared with the degree of the 

nodes in the graph.  
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