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Abstract: This paper proposes a Primal-Dual Interior Point (PDIP) algorithm for solving short-term hydrothermal
power system (STHTS) scheduling problem considering power losses in transmission system, forecasted wind power
and transmission line constraint. A mathematical model for solving the problem of STHTS has been developed and
implemented in the MATLAB software package. The PDIP forms Lagrange function by adding an internal (barrier)
penalty function, and converting all inequality constraints to equality constraints, and then Newton's iterative method
is used to solve the system equations. The main advantages of the PDIP method are the large scale type and the ability
to solve optimization problems with sparse matrices. The effectiveness of the proposed PDIP has been previously tested
on different hydrothermal power systems and the obtained test results have been compared to those from other methods
in the literature. The main purpose of this paper is to highlight the impact of transmission line constraint on the operating
costs of the thermal power plants, i.e. that it should be included in the mathematical model of STHTS.
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KPATKOPOYHO XUJIPOTEPMAJIHO COAEJCTBO 3ACHOBAHO HA METOJOT
HA ITIPUMAPHO JBOJHA BHATPEIIIHA TOYKA

AncrtpaxT: BooBoj Tpya e nmpe3eHTHPaH U NPEATIOKEH AIrOpUTaM Ha NPUMapHO [BojHa BHaTpeinHa Touka (PDIP)
3a pelaBambe Ha ONTHMH3AIHOHUOT MPOOIeM Ha KpaTKOPOTYHO XuapoTepManHo comejctBo (STHTS), yBaxysajku ru
3aryOuTe BO MPEHOCHHOT CHCTEM, NPEIBHAECHOTO IPOU3BOJCTBO OJ BETEPHUTE EIEKTPAaHH M OTPAHUIYBAHETO 32
npeHocHara Mpexa. @opMupaH e MaTeMaTHIKK MOJEI 3a pelaBame Ha mpodiaemor STHTS u e nmmemenTHpaH BO
nporpamckroT maker MATLAB. Co amropuramor PDIP ce ¢dopmupa JlarpamxoBa QyHKIMja IpeKy JoAaBame
BHaTpenHa (baprepHa) neHanu3annoHa QyHKIHja, Kako U MPETBOPambe Ha CUTE OPaHNUYyBakba 0/ THIIOT HEPABEHCTBO
BO OrpaHHYyBama O] THUIOT PaBEHCTBO, a MOTOa € KOPHUCTEH MTEpaTHBHUOT Meron Ha Newton 3a penraBame Ha
CHCTeMOT paBeHKHU. [maBHaTta npegHoct Ha anroputamot PDIP e gakroT mrto mpercraByBa METOA 3a peliaBambe Ha
ONTHUMU3ALKMOHK MpobsieMu co rosieMa aumensuonannoct (large scale), kako u crocoGHOCTa 3a pelaBame ciaado
nonoHeTH Matpuii. EdukacHocTa Ha mpeaioxkeHnot anroputam PDIP e mpeTxomHo TecTupaHa Ha pa3anyHA XHUAPO-
TepMaJHU CHCTEMH, a JOOUSHUTE Pe3yNITaTH Ce CHOPEICHN CO OHHE OJ] APYTU METOH BO JINTepaTyparta. [ taBHaTa men
Ha OBOj TPYA € Ja Ce UCTaKHE BIIMjaHHeTO Ha OrpaHMIyBamaTa Ha MPEHOCHHUTE BOJOBU BP3 TPOIIOIHTE 3a paboTa Ha
TEPMOEIIEKTPAHUTE, T.€. IeKa € HEOITXOIHO TOoa J1a Ou/ie BKIy4YeHO BO MaTeMaTHYKUOT Monen Ha STHTS.

Knyuynu 360poBu: anroputaM Ha BHATPEIIHA TOYKA; KPATKOPOUHO; XHAPOTEPMAITHO COJIEjCTBO

1. INTRODUCTION capacity of hydropower plants can be used, and how

much is the power requirements of thermal power

Power systems in which electricity production plants, in order to meet the system load demand.

is from hydropower plants and thermal power The main goal is to exploit their diversity so that the
plants, require special energy — economic analysis required production is technically and economically

which determines how much of the available most favorable, i.e. to minimize the operating costs
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of the thermal power plants, as well as to achieve
optimum water consumption in the hydropower
plants, while satisfying a number of technical and
system constraints [1, 2].

In complex hydrothermal power systems,
hydrothermal coordination problem is carried out
on an annual, monthly or daily basis. This paper will
analyze the short-term hydrothermal scheduling
(STHTS) for an optimization period of one day,
with a resolution of one hour.

Short-term hydrothermal scheduling (STHTS)
is the optimal load distribution between the commit-
ted hydropower plants and the thermal power plants,
over aone day, in order to achieve the minimum fuel
costs in the thermal power plants, and by using a
predetermined amount of water in the reservoirs, but
with the satisfaction of a number of technical and
system constraints.

STHTS is a complicated nonlinear convex or
non-convex optimization problem. In recent years
several methods such as dynamic programming
(DP) [3], network flow [4], decomposition tech-
nique [5], mixed integer linear programming (MILP)
[6], and Lagrangian relaxation have been proposed.
(LR) [7]. Since it is a large-scale optimization prob-
lem, as a universal method in the category of large
scale algorithms, a Primal Dual Interior Point
(PDIP) method for nonlinear programming will be
proposed. The PDIP algorithm forms linearized
equations in Newton's algorithm, using Taylor's se-
cond-order development and its iterative solution,
and as a universal method gives a physically accep-
table solution for the decision variables as well as
the dual variables (Lagrange and Karush-Kunn-
Tucker multipliers), that are implemented to create
an augmented Lagrange objective function. The
Interior Point method is based on the Karmarkar’s
algorithm and comprises combinations of projection
scaling method, dual method, primal method, pri-
mal-dual method, barrier function algorithm (inter-
nal penalty function), and Lagrange multipliers met-
hod [8, 9]. The Interior Point method is based on the
first order Karush—Kuhn-Tucker optimality con-
ditions.

2. KARUSH-KUHN-TUCKER CONDITIONS

The most important theoretical basis for non-
linear programming is the Karush-Kuhn-Tucker op-
timality conditions. Karush-Kuhn-Tucker's condi-
tions must be satisfied for any constrained optimal
solution, local or global, for any nonlinear optimi-
zation problem. Let's review the next nonlinear op-
timization problem [10, 11]:

min f (x), u.c. (under constraints):
hyx)=0, k=12,..,K (M

The inequality constraint g;(x) < 0 is active
at the point x,, if g;(xo) =0, or is inactive if
gj(xo) < 0. In general nonlinear optimization
problem, the following Lagrange function can be
formed, i.e.:

L(x,4,p) = f(x) + X521 Achy (x) +
+ Z§=1 1jg;i(x) (2)

In expression (2), the Lagrange multipliers A
correspond to the equality constraints, and the
Lagrange multipliers u; correspond to the inequa-
lity constraints. The multipliers u; are also called
Karush-Kuhn-Tucker multipliers. The vector x sa-
tisfies the Karush-Kuhn-Tucker (KKT) conditions
for the non-linear programming (Nonlinear Pro-
gramming Problem — NLPP), if there is a pair of
vectors A € R¥ and p € R/, so that:

VL = VF(x) + Sy AVhy (0 +

+ 199,00 = 0 )
W) =0, k=12..,K ()
gi® <0, j=12,.,] (5)

uigix)=0, j=12,.,J (6)
ui>0, j=12,..,] )

Conditions (3) — (5) are from constrained
optimization with equality constraints through the
Lagrangian multipliers method. The condition (6) is
called condition of complementarity, and is defined
as follows. If the j-th constraint is inactive, i.e.
gj(X0) < 0,thenu; = 0,soistrue that u;g;(x,) =
0. Otherwise, if the j-th constraint is active, i.e.
gj(Xg) =0, then it is not necessary for the
multiplier u; to be equal to zero, since it is already
fulfilled that ;g (x,) = 0. An additional condition
is that the multiplier x; must be a greater than zero,
as shown in the non-negativity condition given by
the expression (7).

3. PRIMAL-DUAL INTERIOR POINT
ALGORITHM
Primal-Dual Interior Point (PDIP) method

marks a major development since 1984, when he ap-
peared as projective Interior Point (IP) algorithm,
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which was proposed by Karmarkar [12]. The basic
Interior Point algorithm dates back to earlier times,
with the most significant contribution being made
by scientists: Frisch [13], Dikin [14], Fiacco and
McCormick [15] and Khachiyan [16]. This section
will present the mathematical model of the PDIP al-
gorithm, which is used to solve nonlinear problems.
The general nonlinear optimization problem, as
noted earlier, is generally formulated according to
expression (1), where f(x), x, g;(x) and hy (x) are
objective function, decision variables vector, a in-
equality constraint functions vector and a equality
constraint functions vector, respectively. What
needs to be emphasized in this method, is that before
proceeding to solve the above nonlinear problem,
the PDIP transforms the inequality constraints into
equality constraints by adding additional positive
variables, i.e: min f (x), u.c.:

gX)+s=0, j=12,..,]
x) =0, k=12,..K (8)
s=>0

where s represents the vector of the additional
variables, i.e.

s=[S1 S2 = 9.

The non-negativity condition (s = 0) is obtai-
ned by adding a negative sum of logarithmic func-
tions, where each individual function depends on
the additional variables (elements of the vector s),
in the objective function, thus forming a logarithmic
barrier, i.e.:

minf, (x) = f(x) -y X_;In(s;).  (9)

where y is a barrier parameter (internal penalty
factor), which in the iterative solution procedure
gradually approaches zero, as PDIP algorithm con-
verges to the optimal solution. Accordingly to this,
we obtain the augmented Lagrange function of the
PDIP for solving nonlinear optimization problems,
whose algorithm is formulated by expression (9),
and is defined as follows:

L=f00)-A(~h() - p (-9, —s) -
—y - In(s)). (10)

where

A — vector of Lagrange multipliers for equality
constraints,

i — vector of Lagrange (KKT) multipliers for
inequality constraints.

Furthermore, these same Lagrange (or KKT)
multipliers represent the dual variables of PDIP
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algorithm. The dual variables represent the change
of objective function value, with respect to the
change of the values of decision variables [17] and
symbolically is expressed with the following
vectors:

AT:[/M Ay Akl (11)
pl =t H2 - Hy] (12

In order for the solution to be optimal solution
to the nonlinear optimization problem, the neces-
sary first-order optimality conditions, i.e. Karush-
Kuhn-Tucker conditions must be satisfied:

V.L =V.f(x) + AV,h(x) + uV,g(x) =0 (13)

V,L=hx)=0 (14)
ViL=g(x)+s=0 (15)
V.L=—y®s1.e4+pn=0 (16)

where:

V.f(x) — vector of first-order partial derivati-
ves of the objective function,

V. h(x) — vector of first-order partial derivati-
ves of the equality constraints,

V.g(x) — vector of first-order partial derivati-
ves of the inequality constraints,

S — diagonal matrix of additional variables,
e — vector of ones.

This Lagrange function is solved iteratively by
the Newton’s method (taking into account the size
of the iteration step calculated by Newton direction
and Hessian matrix), until satisfactory predetermi-
ned accuracy is achieved [3, 6].

3.1. One iteration of Newton's method
for determining the increments of variables

After defining the Lagrange function, we pro-
ceed to create matrix form of equation system for
the corresponding optimization problem, where
each matrix is made up of appropriate submatrices,
with different dimensions [18, 19, 20]:

AAx® = |b|, a7
where:
A — matrix of the second partial derivatives

given in (15), including the Hessian matrix of the
Lagrangian function V2L,

AxS — matrix with increments of all variables
(primal, additional and dual),

b — free member of matrix equation equal to
non-negative gradients.
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The solution of this system of equations yields
the increments of all the variables involved in the
iterative calculation process, and they serve to
update the variables from the initial values until a
final or optimal solution is obtained. In order for the
system equations (17) to satisfy the Karush-Kuhn-
Tucker conditions, the system matrix must be
positive semi-definite [17].

3.2. Updating variables

The primary, additional, and dual variables in
the PDIP algorithm are updated as follows [18, 19]:

xK+D = x(K) 4k apAx (18)
s+ = s 4 k apds (19)
ARAD = A0 4 kAN (20)
p+D = n® 4 g oap Ap (21)

Scalar parameters ap u ap represent the step
lengths of the primal and dual variables respective-
ly. The scalar parameter kg € 0,1 represents a factor
of certainty that imposes a strict condition for the
non-negativity of the additional variables (elements
of the vector s) and the dual variables (elements of
the vector p) in each iteration. The parameter kg in
most cases it is initially set to a value of 0.99995,
and its value is updated by multiplying iteratively
by itself, which should contribute to achieving the
non-negativity of the variables s and p (according to
the non-negativity condition of the KKT conditi-
ons), so it applies in each iteration of the defined
iteration process.

3.3. Calculation of the step length of the primal
and dual variables

Determining the optimal step lengths of the
primal, additional and dual variables is necessary
for updating the variables in the vectors x, s, A and
K. The step length parameter is updated in order to
satisfy the non-negativity conditions of the variab-
les s and p. To achieve this, the maximum permis-
sible step length for primal, additional and dual vari-
ables is calculated as follows [10, 19]:

. . Sj
a = min| min ——, 1 22
PMAX Asj<0|ASj|’ ] ( )
. .U
a = min| min ——,1 23
Dmax [Au,-<0|ﬂuj|’ ] 23)

where:
Jj —current index, with value of 1,.., J,

Apmax — Maximum step length of primal and
additional variables,

Apmin — Maximum step length of dual vari-
ables,

If apnax and apmax after calculation accord-
ing to (22) and (23), they are an empty set, then they
get an initial value of 0.001. The maximum permis-
sible step lengths are subjected to one more test, i.e.:

o If appax IS 1€SS than or equal to 0.001, or greater
than 0.9, then it gets an initial value of 1.

o If ap,ax IS l€ss than or equal to 0.001, or greater
than 0.9, then it gets an initial value of 1.

Finally, another modification is performed that
contributes to maintaining the non-negativity of the
s and u vectors. Expressions (24) and (25) calculate
the step lengths ap and ap, based on the already
calculated maximum selected step lengths, which
are divided by 1.13, i.e.:

_ a@pMAX

aP - 113 ' (24)
_ @pmaAxX

ap == (25)

In order to avoid the oscillatory convergence
of the iterative process, it is acceptable to choose the
lower value of ap and ap, from expressions (24)
and (25), and with that value to perform
initialization of ap and a, for next iteration.

3.4. Updating the barrier penalty factor

To calculate the barrier penalty factor (barrier
parameter), the complementary difference p® is
the first calculated in each iteration, as a scalar pro-
duct of vectors p® and s j.e.:

T
p = (u(k)) s (26)
Then, by using the complementary difference,

the barrier penalty factor is calculated as:

(k)
where p, ], o represent the complementary differen-
ce, the number of the inequality constraints type,
and the centering parameter (which usually has a
value of 0.1), respectively.

3.5. Convergence

PDIP algorithm converges (iterative process is
interrupted) when all four criteria are satisfied, i.e.:

J. Electr. Eng. Inf. Technol., 5 (1) 23-32 (2020)



Short-term hydrothermal coordination based on primal-dual interior point method 27

v < g (28)
v < g (29)
v < g (30)
v <e, (31)

where
v = max||[n(x®@)|_, [e(x®)],, | v =

T () + T B + kD),

1+ [,
0 _ p
R

v = 50

The parameter v, represents the maximum
difference in the imbalance of the equality and in-
equality constraints in the defined system of equa-
lities and inequalities. The parameter v, represents
the infinite norm of the Lagrange function gradient,
divided by the square root of the sum of squares of
all variables. The parameter v; is the complemen-
tary difference, divided by the same divisor as is the
case with v,. The parameter v, is the barrier para-
meter. Typically used convergence criteria are &; =
10=°ne, = 1075

4. PROBLEM FORMULATION

The study system is composed of NT thermal
power plants and NH hydropower plants, as well as
NOIE wind power plants, which should meet the
system load demand Pp during the optimization
period, which is divided into equal J periods with
duration of T; = 1 h. The main objective of STHTS
is to optimally utilize the available water for maxi-
mum generation from hydropower plants, as well as
production from each thermal unit, so that total fuel
costs (objective function F) are minimized [19, 20]:

minF =¥ WL RGO T (32

It is assumed that F is a quadratic function, i.e.

Ft(PGT,t) =a+ b . PGT,t +c- P(?T,t‘ (33)
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4.1. Constraints

a) Active power balance

=Pp(j) + Py, (34)

where the power losses in transmission lines P are
calculated using Kron’s formula [1]:

NG NG NG
P=). Z PeiByPe; + ) BuoPoi + oo
i=1j= i=1

(35)

b) Power generation limits

Each thermal and hydrogenerating unit have
their upper and lower power limit:

PO < Pery < POPE

PGHh<PGHh<PmaX (36)

¢) Water availability constraint

The total available water discharge of each
hydropower plant for the whole scheduled time
horizon is limited by:

~1Qer() - Tj < Wy, (37)

where Qu (j) is stream flow of hydropower plant h,
in interval j, and is determined by:

ch(PGH,h) =a+pB Peun+V - Péup (38)

d) Transmission line constraint

The active power of the transmission line, i.e.
between two buses, must be less than or equal to its
maximum transmission capacity:

|Perg| < POKS, 9=1,..G, (39)

where G represents the number of transmission lines
(branches) in the system. Expression (39) takes the
absolute value of transmission line power, since the
power flows in some transmission lines may have
opposite directions from the reference. Therefore,
expression (39) can be represented as a constraint
with two interrelated expressions:

max
Pgrg = Pgrg

40
_PGR,g < P(I;Ill{’a,l,)g( ( )

Using the transmission line power dependence
of the generator power P;; = H - P; (where H is a
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matrix with G rows and NT + NH columns, obtained
from the DC model, i.e. DC power flow, in which
line resistances are negligible, i.e. R « X, sin(f) =
0i.e. cos(8) = 1, and magnitudes of bus voltages are
set to 1.0 p.u.), expressions (40) can be written in
matrix form:

AR @)

4.2. Decision vector

From the problem formulation, x represents a
decision vector (vector of decision variables), which
is composed of the power out of hydro unit and the
power out of thermal unit. Accordingly, it is com-
posed of (NT+ NH)-J=(4+5)- 24 =216
variables, i.e.:

x = [Per1 (D Per2(D), Pers (D, Pera(),

PGH,l (])' PGH,Z (]), PGH,3 (])' PGH,4(j)J PGH,S (])]T
(42)

4.3. Formation of the Lagrange function

According to the above, a barrier penalty factor
is added to the Lagrange function y, so the Lagrange
function which is minimized by PDIP algorithm, is
given by:

L=3 YR () )T+m(£p6”(j)+

j=1t=1 j=1 =1

+N§§P6H’h( )+ z ey ()= B () pL]+

+Z;uh(Zch( )T Vh+svodahJ+

J
S| S e

=t

PGT,t(J')"‘Stmin]"‘

J
+ Z v [ > Peri (1)-PEF% (§)+8™ ) + (43)

=1

J
el Lt PGH,h<J)+shm'”]
=1

+zw;"“[zpm() Pemﬁxh(msa““}

h=1
+§¢(|PGR,g| PG”Ef’;+S) 7N£|n(5voda,h)‘
() (s

) (s

g=1

) ()

—7/hz:‘,l|n(

i.e.
J NT
L= Zth(j) Ty — ATh(x) —
j=1t=1
- .uIT-I(_gvoda(x) - Svoda) -
- V;in(_gT,min(x) - ST,min) -
- Vraax(_gT,max(x) - ST,max) -
- lp;rnin(_gH,min(x) - SH,min) -
- lpz;lax(_gH,max (x) - SH,max) -
~ 97 (=960 = 568) = ¥ ) 1n(Suoaa) -
h=1
NT NT
- VZ ln(ST,min) -y Z ln(sT,max) -
t=1 t=1
NH NH
-y Z ln(SH,min) -Y z ln(SH,max) -
=1 h=1
G
Y i
=] (43)
where

AT — matrix with Lagrange multipliers for
equality constraints,

h — matrix with equality constraints,

T ,,T T T T H i
HH> Vimin, Vmax, wmin' Ymax, @ — matrix with

KKT (Karush-Kuhn-Tucker) multipliers for ine-
quality constraints,

Yvodar YT,min, gT,max' 9H min, gH,max: Ider —
matrices with mequallty constraints,

Svodar ST, min» ST, max> SH,min' SH,max: SGR
matrices of integrated non-negative variables.

5. APPLICATION OF THE PROPOSED METHOD
TO SOLVE SHORT-TERM HYDROTHERMAL
COORDINATION

The study case is a modified IEEE 30 Bus Test
System [23, 24, 25, 26] consisting of five hydro-
power plants, four thermal power plants, one wind
power plant, 30 buses, and 48 transmission lines
with maximum transmission capacity of each line,
respectively. The aim is to perform STHTS with an
optimization period of 24 hours. The optimization
period is divided into 24 time intervals, with dura-
tion of 1 hour. The data for the load demand over
study period (Figure 1) and the predicted power ge-
nerated by the wind power plant (Figure 2), real-
time data or hourly forecasts are taken for 30. 12.

J. Electr. Eng. Inf. Technol., 5 (1) 23-32 (2020)
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2019, from the reference [21]. The power system
which is subject to analysis is shown in Figure 3.

1000
ann
123 4567889

10 11 1213 14 1516 17 18 19 20 21 22 23 24

t(h)

o

Fig. 1. Load demand over study period

12 3 456 7 8 9101112131415 1617 18 19 20 21 22 23 24

t(h)

Py W)

Wwom o= o w
o o

=k ow b

Fig. 2. Predicted power generated by the wind power plant

Fig. 3.. Modified IEEE 30 Bus systems

The thermal power plants TP 1, TP 2, TP 3 and
TP 4 are located at the buses 1, 2, 22 and 23,

Ciuc. Enexiupoitiext. Ung. Texnon. 5 (1) 23-32 (2020)

respectively. The data for the thermal generating
units: the fuel cost function coefficients, as well as
their rated lower and upper power limit are shown
in Table 1 [22, 27].

Table 1

Data for thermal generating units

Unit a; b; Ct P{{}i? o
€h)  (E/MWh) (E/MW2) (MW) (MW)

TP 1 35 2.041 0.00129 110 400

TP 2 25 3.2 0.0025 50 400
TP 3 30 3.4 0.0008 50 400
TP4 65 1.9 0.0026 120 300

The hydropower plants are located at the buses
11, 13, 17, 28 and 29, respectively, and the wind
power plant at the bus 27. The data for hydropower
plants: the input-output characteristic coefficients,
their rated lower and upper power limit, as well as
the available amount of water in the reservoir, are
shown in Table 2 [22, 28].

Table 2
Data for hydropower plants

Unit Oh ﬁh Yh PZ;KF? Pgr;}? Vmax

(m¥h) (MIMWh) (m¥MWzh) (MW) (MW) (105 m?)

HP1 56.067 8.665 0.0061 0 120 7.0792
HP2 26.505 17.330 0.0100 0 120  5.9465
HP3 1.98 0.306 0.000216 30 110 10
HP4 0.936  0.612 0.0002 40 110 10

HP5 1.58 0.512 0.0003 30 110 8

Optimization will also consider transmission
losses, whose B coefficients matrices are given in
[27].

In order to emphasize the impact of the trans-
mission network on the operating costs of thermal
power plants, the security constraint for the maxi-
mum transmission capacity of each transmission
line in the system will be considered. The data for
the transmission lines of the system are given in
[27].

Accordingly, two cases will be analyzed:



30

B. Postolov, S. Nikolova Poceva

e Case 1. STHTS with considered transmission
losses and neglected transmission line const-
raint.

e Case 2: STHTS with considered transmission
losses and considered transmission line con-
straint.

5.1. Results and analyses

From the results it follows that the total oper-
ating cost in the power plants in the first case are
30,567.7, while the second case are 36486,4 €. The
total generation from thermal power plants is

350

PGT,2

12547.96 MWHh, which represents 51 % of the total
electricity generation. Hydropower plants generate
a total of 10373.44 MWh, which represents 42 % of
total electricity generation. The remaining part of
7 %, i.e. 1757,73 MWh covers wind power plant.
Total transmission losses in the system during the
whole optimization period are 1322.03 MWh, i.e.
average 5.19 % of total generation in all intervals
(24 h). The optimal power output of the thermal
power plants and hydropower plants are presented
in Figure 4 and Figure 5. The results for the trans-
mission line active power (DC — OPF) during the
whole optimization period are presented in Table 3.

13 15 17 19 21 23

Interval (h)

PGT,3 PGT,4

Fig. 4. Optimal hourly power generation of thermal plants
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Fig. 5. Optimal hourly power generation of hydropower plants

6. CONCLUSION

Harmonization of power generation through
STHTS is an important activity in complex hydro-
thermal power systems, which on the basis of tech-
nical and economic optimization criteria, provides
the opportunity for optimum utilization of thermal
and hydro generating units.

The mathematical models of power plants,
reservoirs, as well as the mathematical model of the
optimization problem presented by Lagrange func-
tion, could be used to develop the optimal planning
methodology. For the one-day optimization period,
hydropower mathematical models are performed by
neglecting the water flow balance equation in reser-
voir.

As theoretically explained, the Primal-Dual
Interior Point (PDIP) algorithm, which as a global
optimization method for nonlinear programming, is
applied to nonlinear optimization problems with
high dimensionality (large scale optimization prob-
lems), because it has great versatility and the ability
to solve sparse matrices. The main contribution of
this study is solving the optimization problem by
considering the transmission line constraint and in-
tegrating forecasted wind power plant production.

This paper, with its content, can serve for futu-
re to extend models of STHTS optimization prob-
lem, for various constraints, load diagrams, number
of generators, hydrological conditions and the like.
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Table 3
Optimal power flow of transmission lines (MW)
Line | th | 2h | 3h | 4h | 5h | 6h | 7h | 8h | oh | 10n | 11h | 12h | 13h | 14h| 15 | 16h | 17n | 18h | 19h | 20h | 2Lh | 22h | 23 | 24h
1 [166.0(135.61100.3]| 89.1 [ 80.9 | 84.6 | 92.1 | 97.5 | 109.5 [ 144.4| 165.3|176.5| 180.3 | 182.4 | 177.7| 177.21195.9 196.5 [ 196.4 | 196.3 | 195.9 | 195.5  185.6 | 165.5
2 | 370300 (195|194 183 | 189 ( 19.2 | 194 | 21.1 | 30.4 | 36.7 | 40.1 | 41.3 | 42.1 | 40.4 | 40.3 | 49.0 | 53.2 | 52.5 [ 51.7 | 49.5 | 47.4 | 433 | 36.8
3 |-106] -9.0 [-105| -65 ] -5.0 | -5.6 [ -7.9 | -9.7 | -11.7 | -11.7(-10.7[-102| -9.9 | -9.6 [-10.1(-101| -50 | 03 | -0.6 [ -1.6 | -45 | -7.1 | -9.1 [ -10.6
4 1284227 (131136129 | 134 (133 | 13.1 | 143|225 ( 282 [ 31.2 | 323 | 331 | 315 | 31.4 | 39.6 | 43.3 | 42.7 | 42.0 | 40.0 | 38.2 | 343 | 283
5 155.9]131.3(109.8| 97.3 | 90.5 | 93.1 [ 101.1|106.9|117.4]141.9( 155.4 [ 162.7 | 165.1 ] 166.0 [ 163.5 [ 163.1 | 173.3| 174.6 | 174.3 [ 174.1| 173.5| 172.7]| 167.5 [ 155.5
6 [64]-29|-69(-38(-38]-32]|-50]|-63]|-73]|-73]-64|-60]|-57]-53|-60|-60]| 04 | 61 52 (41 [ 11 [-1.7(-45](-64
7 |165] 253 (135109 | 44 | 93 (109 | 129 | 168 | 168 [ 165 [ 16.2 | 163 | 171 | 16.2 [ 16.2 | 235 | 26.1 | 25.7 [ 25.2 | 23.8 | 22.4 | 183 | 165
8 |-129.1]-106.0{ -91.7 | -78.8 | -73.2 | -74.9 [ -83.0 | -88.7 | -98.2 |-118.4(-128.8(-134.5|-136.2|-136.6(-135.1(-134.8|-137.2|-131.4|-132.3(-133.4|-136.5|-139.2|-137.2(-128.8
9 210.2]175.6(152.6133.5]125.0|127.7  139.6 | 148.2 | 162.5] 193.5( 209.6 [ 218.5| 221.3| 222.0 | 219.4 [ 219.0 | 226.6 | 225.6 | 225.8 [ 226.0 | 226.5 | 226.8 | 223.0 | 209.8
10 |-112.0| -47.2 | -48.1| -52.2 | -56.3 | -54.0 [ -51.2 | -49.1 | -45.4 | -84.5 -111.0{-125.8/-130.0]-130.0{-127.3(-126.6-130.0/-130.0]-130.0{-130.0{-130.0|-130.0]-130.0{-111.2
11 |-241]-419(-384|-252|-15.8]-19.9(-29.2| -35.4 | -44.1 | -35.4 [ -245 [ -18.6 | -16.7 | -16.1 [ -17.9 [ -182| -87 | 06 | -0.9 [ -2.7 | -7.7 | -12.1|-15.2 | -24.4
12 | 245 26.7 | 26.0 | 203 | 144 | 192 [ 216 | 25.0 | 27.7 | 26.2 | 246 | 23.7 | 235 | 233 | 23.7 [ 23.7 | 21.9 | 20.7 | 20.9 | 21.1 | 21.8 | 22.4 | 23.1 | 246
13 | -58.4]-67.3(-62.1|-51.6|-37.7|-47.8 [ -53.0 | -58.9 | -66.6 | -66.2 | -58.7 [ -54.6 | -53.3 | -52.8 | -54.1 [ -54.3 | -47.1 | -40.7 | -41.8 | -43.0 | -46.4 | -49.5 | -52.1 [ -58.6
14 [ 343|253 | 23.7 (265 (219|279 | 238 | 235 | 22.4 | 30.8 | 342 | 36.0 | 36.6 | 36.7 | 36.2 | 36.1 | 38.4 | 41.3 [ 40.8 [ 40.3 | 38.7 [ 37.4 [ 36.8 | 34.2
15 |-25.7]-34.8(-31.2|-22.0 | -13.8 | -19.1 ( -24.4 | -29.3 | -35.6 | -30.9 [ -25.9 [ -23.1 | -22.3 | -22.1 | -22.8 [ -23.0 | -18.7 | -14.0 | -14.8 [ -15.7 | -18.2 | -20.5 | -21.7 | -25.9
16 |-955]-93.3(-852|-70.6-53.9|-68.1(-73.4|-82.7|-91.2]-93.8 (-95.4[-96.3|-96.5]-96.7 | -96.3 [ -96.3 | -98.1]-99.3]-99.1(-98.9-98.2|-97.6|-96.9  -95.4
17 | 14 | 72 (102 | 56 | 19 | 47 [ 69 | 94 | 106 58 [ 16 [ -0.7 | -15] -1.8 | -09 [ -08 | -56 | -89 | -84 (-77 | -59 | 43| -24 | 15
18 | 313 | 28.7 [ 26.6 | 23.9 | 179 | 238 [ 23.7 | 26.0 | 27.5 | 30.1 | 31.2 [ 31.8 | 32.0 | 321 | 31.9 [ 31.9 | 32.9 | 340 | 338 [ 33.6 | 33.0 | 325 | 32.2 | 31.2
19 | -2.7 |-116(|-127| -78 | 51| -53 [ -94 |-113|-141] -98 [ -30 [ 0.7 | 1.9 | 24 [ 11 [ 09 | 81 | 139|129 (118 | 87 | 59 | 32 | -29
20 | 185] 92 [ 41| 82 | 91 | 94 [ 64 | 47 | 41 | 120 182 [ 21.6 | 227 | 232 | 22.0 | 21.8 | 28.7 | 33.7 | 329 [ 319 | 29.2 | 26.8 | 24.0 | 183
21 | 320304 275 258 | 19.2 | 25.6 | 249 | 26.7 | 28.5 | 32.0 | 32.0 [ 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 [ 32.0 | 32.0 | 32.0 | 32.0 | 32.0
22 |28 |-37[-50|03]-09]27|-26|-41]|-65]-17( 27 51| 58] 6253|5298 |134]129( 122|102 84 | 6.7 | 2.7
23 |-259]-303(-272|-165]-18.9 | -12.0 [ -22.3 | -25.6 | -31.3 | -28.5( -26.0 [ -24.7 | -24.2 | -24.1 | -24.5 [ -24.6 | -22.2 | -20.1 | -20.4 [ -20.8 | -21.9 | -22.9 | -23.8 | -26.0
24 |-59.7]-59.3[-52.6 | -39.3 | -40.5]-34.0 [ -45.9 | -50.4 | -58.1 | -59.8 | -59.7 [ -59.7 | -59.7 | -59.6 | -59.7 [ -59.7 | -59.4 | -59.3 | -59.4 [ -59.4 | -59.4 | -59.4 | -59.6 | -59.7
25 | -42.41-44.0 [ -38.3 | -26.2 | -28.7 | -21.3 [ -32.6 | -36.5 | -43.4 | -42.9 ( -42.5  -42.2 | -42.1 | -42.1 | -42.2 | -42.2 | -42.0 | -41.6 | -41.6 | -41.7 | -41.9 | -42.1 | -42.1 | -42.5
2 | 65]-73|-61|-55)-27|-55(-51|-58]|-66]|-68(-65(-63|-63]-63|-63[-63|-64]-61]-62-62|-64]-65]-63]|-65
27 | 443 | 413 367 | 312 | 284|292 [ 331 | 355 | 39.2 | 432 | 442 [ 448 | 45.0 | 45.1 | 449 | 449 | 458 | 46.7 | 46.5 | 46.3 | 45.8 | 45.4 | 45.1 | 443
28 | 183|176 | 158 | 13.1 | 11.8 | 121 140 | 152 | 169 | 182 | 183 ( 18.3 | 183 | 183 | 183 ( 183 | 183 | 183 | 183 | 183 | 18.3 | 183 | 183 | 183
29 |-179]-121(-100|-108]-11.3]-11.3 | -104 | -10.1 | -10.2 | -14.5 [ -17.8 [ -19.7 | -20.2 | -20.4 | -19.9 [ -19.8 | -22.9 | -25.7 | -25.2  -24.7 | -23.2 | -21.8 | -20.7 | -17.9
30 | 177167 ( 138 | 120 ) 93 | 115 123 | 135 | 149 | 168 | 17.7 [ 18.2 | 183 | 185 | 182 [ 18.2 | 19.6 | 203 | 20.2 [ 20.1 | 19.7 | 19.3 | 18.7 | 17.7
31103 ] 5558 |23)05] 08|36 |51 ]|67]38](04(-14]-19]-21(-15(-15]|-46]-74]-69(-64]-49]|-35]-24/( 04
32 146 |23 (13| 241930 1815|1230 45 ([ 54 | 57 |58 (55|54 |72 )85]82](80]| 73| 67| 60/ 45
33 |-151) 62 | -50 | -83 |-105] -9.8 [ -70 | -55 | -4.2 | -10.0 [ -14.9 ( -17.6 | -18.4 | -18.6 [ -17.8 [ -17.7 | -21.8 | -25.9 | -25.3 [ -24.5 | -22.3 | -20.3 | -19.0 | -14.9
34 1107] 60 [ 54|65 78] 7061|5551 83 /(106](119 123|124 121 | 12.0| 13.8 | 158 | 155 | 151 | 14.0 | 13.1] 125 106
35 |-21.2]-194(-121]-123)-10.6 | -11.1 [ -11.7 | -11.6 | -16.9 | -19.8 [ -21.1 [ -21.9 | -22.1 | -22.2 [ -21.9 [ -21.9 | -23.6 | -24.6 | -24.4 [ -24.2 | -23.7 | -23.2 | -22.4 | -21.2
36 |-10.2]-11.6( -6.7 | -60 | -40 | -47  -59 | -6.2 | -10.4]-10.7(-102 -99 | -99 | -99 [ -99 [ -99 | -99 | -95 | -96 | -9.7 | -9.9 | -10.1 | -10.0  -10.2
37 |-32.0]-32.0(-204|-195]-16.6 | -16.7 [ -19.0 | -19.2 | -29.8 | -32.0 | -32.0  -32.0 | -32.0 | -32.0  -32.0 [ -32.0 | -32.0 | -32.0 | -32.0 | -32.0 | -32.0 | -32.0 | -32.0 | -32.0
380609151220 10| 14 )13 ] 25| 15| 06 (02] 00 (-01]02](02]-15(-21]-20(-19]-16]-13]-04] 06
39 1307311 (210|199 ) 182|170 196 | 19.6 | 31.2 | 31.9 [ 30.7 [ 30.1 | 29.9 | 29.7 [ 30.1 [ 30.1 | 27.9 | 27.1 | 27.2 | 27.3 | 27.8 | 28.2 | 29.3 | 30.7
40 | 32 | -98 | -82|-43 | -44 | -35|-58| -73 |-10.0| -23 | 30 [ 60 ( 68 [ 68 | 63 [ 61 [ 68 [ 68 | 68 | 68 [ 6.8 | 6.8 | 6.8 | 3.0
41 | -64.0|-64.0]-59.6 [ -49.0 | -52.2 | -47.6 | -53.4 [ -57.0 [ -63.5 | -64.0 | -64.0 | -64.0 [ -64.0 | -64.0 | -64.0 | -64.0 [ -64.0 | -64.0 | -64.0 | -64.0 | -64.0 [ -64.0 | -64.0 | -64.0
42 1210 | 55 ] -98 | 15 | 108 | 64 | -1.3 | -69 [-206| 2.1 | 203 | 30.2 [ 335 | 351 | 31.2 | 30.7 [ 51.8 | 66.4 | 64.0 | 61.2 | 53.4 [ 46.3 | 37.6 | 20.5
43 | -146] 58 | 156 | 28 | -69 | 01 | 6.7 | 136 | 16.8 | -05 | -14.1|-21.4 [ -23.8 | -25.0 | -22.2 | -21.8 [ -36.6 | -47.5| -45.7 | -43.6 | -37.8 [ -32.5 | -26.7 | -14.2
4 | 17 | 46 | 39 (19 | 01 | 11 ] 26| 36|47 |33 181007 |07 )09 ] 09 (|-01]-14]-12]-09(-02(04 ] 06] 18
45 | 46| 72 | 17 |-25|-77| 58] -15| 06 [ 76 | 15 | -44 | -76 | -86| -88 ] -80 | -7.8 -121|-17.1|-16.3]-153(-12.6 (-102| -9.1 | -4.4
46 | 47.2 | 52.7 | 496 | 42.0 | 32.3 | 39.0 | 43.0 | 47.1 [ 525 | 53.4 | 474 | 442 | 43.1 | 42.7 | 43.8 | 44.0 [ 37.6 | 32.6 | 33.4 | 344 | 37.1 [ 39.5 | 42.0 | 474
47 | 65| 43| -25(-13| -39 | 08 -26|-26(-34| 44| 64| -75(-78| 80 -76]-75(-9.7[-113]|-11.1]-10.8( -99 [ -9.1 | -8.2 | -6.4
48 109|126 | 111 79 | 68 | 6.6 [ 9.2 | 105 | 124 | 119 | 11.0 | 105 | 103 | 103 | 10.4 | 104 | 9.7 | 89 | 91 | 9.2 | 9.6 | 10.0 | 10.2 | 11.0
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