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A b s t r a c t: Several methods exist that allow the study of the interactions between dynamic systems in nature. 

Among them is the method of dynamic Bayesian inference, which allows reconstruction of a model that describes the 

interactions between different dynamical systems, based on the measured time series originating from these systems. 

Based on an investigation of a known system of two coupled phase oscillators, an algorithm for improving this method 

has been proposed, by adaptively determining two parameters that were previously arbitrarily selected – the time win-

dow and the propagation parameter. This paper presents the results of the evaluation of the introduced algorithm on a 

second system of coupled oscillators - limit-cycle Poincaré oscillators in the presence of noise. The performed analysis 

confirmed the relevance of the proposed algorithm for improved model inference, which allows for a deeper 

understanding of the interactions described by the coupling functions of the dynamical systems. 
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КОН ПРОТОКОЛ ЗА АДАПТИВНА ДИНАМИЧКА БАЕСОВА ИНФЕРЕНЦИЈА:  
СЛУЧАЈ НА ОСЦИЛАТОРИ НА ГРАНИЧЕН ЦИКЛУС 

А п с т р а к т: Постојат неколку методи кои овозможуваат проучување на заемното дејство на динамич-

ките системи во природата. Меѓу нив е и методот на динамичка Баесова инференција, кој овозможува рекон-

струкција на модел кој гi опишува заемното дејство на различни динамички системи, засновано врз измерени 

временски серии кои потекнуваат од овие системи. Врз основа на истражување на познат систем од два спрег-

нати фазни осцилатори е предложен алгоритам за унапредување на овој метод, преку адаптивно одредување 

на два параметра кои претходно беа произволно избирани – временскиот прозорец и параметарот на пренесу-

вање. Во овој труд се презентирани резултатите од евалуацијата на воведениот алгоритам на втор систем спрег-

нати осцилатори – осцилатори на граничен циклус на Поанкаре во присуство на шум. Спроведените анализи ја 

потврдуваат релевантноста на предложениот алгоритам за подобрена инференција на моделот, која овозможу-

ва подлабоко осознавање на заемното дејство на динамичките системи опишани преку функциите на спрега. 

Клучни зборови: адаптивна динамичка Баесова инференција; спрегнати осцилатори;  

одредување на временски прозорец

1. INTRODUCTION 

Several oscillatory systems are part of the hu-

man body: cardiac function is periodic, respiration 

is an oscillatory process, brain waves are oscillatory 

in nature, and so on. Some of these systems have 

been found to interact with each other, and this in-

teraction has a strong influence on their behavior. 

The study of the interactions of these oscillatory 

systems can lead to new ways of describing the 

physiological states of the healthy organism or de-

termining various pathological conditions [1 – 6]. 

One of the challenges in studying the oscillatory 
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systems of the human body is their time variability. 

The classical approach in the study of these interac-

tions consists in dismissing this time variability, but 

such an oversimplification may lead to overlooking 

key features that actually determine the nature of the 

phenomenon. Therefore, it is necessary to take into 

account the dynamics of the interactions of biologi-

cal systems. 

Several methods have been proposed for in-

vestigation of the influence one dynamical system 

exerts on another [7 – 14] and a great deal of them 

are based on investigations of the phase dynamics 

of the systems [1, 8, 15, 16]. The method that is of 

interest for this resarch is the dynamical Bayesian 

inference [8, 16] which is used for inference of time 

varying phase dynamics in the presence of noise. In 

this method, by investigating time series of oscilla-

tor phases obtained by measurements and their pro-

cessing, a model that describes the system is infer-

red and then analyzed. From the analysis of the in-

ferred coupling functions, information regarding the 

interactions of the systems is obtained [17 – 19]. 

When analyzing the data obtained from the 

measurements of the dynamic system, one of the 

general issues is how to determine the length of the 

time window. Usually, the analyses are performmed 

in a manner that the time series of the measurement 

is considered a sequence of blocks of data and the 

duration of each block is determined by the time 

window. The time window should be long enough 

to include enough data for appropriate inference and 

at the same time, short enough to provide the best 

possible time resolution to describe the variability 

of the parameters. In addition, the method of dy-

namical Bayesian inference uses part of the infor-

mations inferred in the previous block of data to 

make the inference of the current block. How much 

of the information is propagated from the previous 

to the next block of inference is determined by the 

so-called propagation parameter of the covariance 

matrix. In [20] we proposed a method for determin-

ing these two parameters within the dynamical 

Bayesian inference. In this paper we give further de-

tails on testing this method on a system of coupled 

limit cycle oscillators. 

2. THEORETICAL BACKGROUND 

The dynamical Bayesian inference method [8, 

16] is applied to a stochastic differential model 

where the deterministic part is time varying. We 

consider two weakly interacting coupled oscillatory 

systems in presence of noise. In case of weak cou-

pling, the system can be described using the phase 

approximation approach [15, 21]. In this approach 

the oscillator’s state is described by a single phase 

variable which increases monotonically with time. 

For a system of two interacting oscillators, the dy-

namical process can be presented as:  

 �̇�𝑖 = 𝜔𝑖 + 𝑞𝑖(𝜑𝑖 , 𝜑𝑗) + 𝜉𝑖 , (1) 

where φi is the phase of the i-th oscillator, ωi is its 

phase velocity, qi is the coupling function describ-

ing the interaction between the two oscillators and 

ξi  is the noise. The noise is assumed to be white, 

Gaussian, described as 〈𝜉𝑖(𝑡)𝜉𝑗(𝜏)〉 = 𝛿(𝑡 − 𝜏)𝐸𝑖𝑗 

and the information about the correlation between 

the noises of the two oscillators is included in the 

symmetric matrix Eij. 

Because of the periodic behavior of the system, 

it can be represented by Fourier decomposition. The 

dynamics will usually be well described by a finite 

number of Fourier terms and (1) can be written as: 

 �̇�𝑖 = ∑ 𝑐𝑘
𝑖  𝛷𝑖,𝑘(𝜑𝑖, 𝜑𝑗)𝐾

𝑘=−𝐾 + 𝜉𝑖(𝑡) , (2) 

where i = 1, 2, Φ1,0 = Φ2,0 = 1, 𝑐0
𝑖   = 𝜔i, and the rest 

Φi,𝑘 and 𝑐𝑘
𝑖  are the K-most important Fourier 

components.  

Thus, the inference of the coupling functions 

describing the interaction between the oscillators 

will be reduced to inference of the unknown param-

eters of the model M = {𝑐𝑘
𝑖 ,  𝐸𝑖𝑗}. 

In the application of the dynamical Bayesian 

inference method, two time series of phases 𝜒 =

{𝜑𝑖,𝑛 ≡ 𝜑𝑖(𝑡𝑛)}, (𝑡𝑛 = 𝑛ℎ, 𝑖 = 1, 2) are obtained 

from measurements and subsequent phase extrac-

tion procedure. The inference of the unknown pa-

rameters of the model is achieved by using the 

Bayes’ theorem in order to maximize the condi-

tional probability of observing parameters M, given 

the data 𝜒. Knowing the prior density pprior(M) of the 

parameters and the likelihood function l(χ|M), the 

Bayesian theorem provides a way to determine the 

posterior density of the unknown parameters, con-

ditioned on the observation M: 

 𝑝𝜒(𝑀|𝜒) =
𝑙(𝜒|𝑀)𝑝𝑝𝑟𝑖𝑜𝑟(𝑀)

∫ 𝑙(𝜒|𝑀)𝑝𝑝𝑟𝑖𝑜𝑟(𝑀)d𝑀
 . (3) 

Further theoretical details about the method 

are given in the literature [8], [6], [12], [23]. 

When applying the method in practice, certain 

initial assumptions about the unknown parameters 

are made and then the method is recursively applied. 

The time series of the phases are organized in sub-

sequent blocks of samples. Each block includes 
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certain amount of subsequent phases defined by the 

time duration of the block. The time duration of the 

block is called the time window tw. For each block 

of data an inference is made and a set of values for 

the unknown parameters is obtained. The output set 

of values for the parameters from the previous block 

becomes the input for the following block of infer-

ence. In each following step of the inference, for 

each subsequent block of data, the inferred parame-

ters are closer to their real values. With each step, 

along with the model parameters, the concentration 

matrix for the set of parameters is inferred as well. 

The concentration matrix is the inverse of the covar-

iance matrix, which gives the variances of the in-

ferred parameters. 

Since the method infers dynamical systems in 

the presence of noise, the inferred set of parameters 

need to accurately follow the time evolution of the 

system and at the same time distinguish the noise 

from the dynamical effects. Therefore, in the prop-

agation sequence of the method, the input covari-

ance matrix for the following block is taken as a 

convolution of the covariance matrix of the current 

block and a diffusion matrix defined by the normal 

diffusion of each of the parameters: Σ𝑝𝑟𝑖𝑜𝑟
𝑛+1 =

Σ𝑝𝑜𝑠𝑡
𝑛 + Σ𝑑𝑖𝑓𝑓 ([8, 16]). The diffusion matrix de-

scribes which part of the dynamical field defined by 

the oscillators is changed and the intensity of those 

changes. The elements of this matrix are given by  

(Σ𝑑𝑖𝑓𝑓)𝑖,𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗, where σi is the standard devia-

tion of the diffusion of parameter ci, after time win-

dow tw from the previous to the next block of sam-

ples and ρi,j describes the correlation between the 

changes of parameters ci and cj. In the method, a 

special case is assumed when there is no correlation 

between the parameters 𝜌𝑖,𝑗 = 0, for 𝑖 ≠ 𝑗 and every 

standard deviation σi is a known fraction of the cor-

responding parameter ci: σ𝑖 = p𝑤𝑐𝑖 , where pw is a 

constant parameter called propagation parameter. 

The index w in pw emphasizes that the propagation 

parameter is determined for a time window of length 

tw. The propagation parameter defines how much 

variability should be sought for in the inference. It 

balances between making an accurate inference of 

the time variability of the parameters and not in-

volving too much random noise. 

In the earlier applications of the method of dy-

namical Bayesian inference [8], [6], [24 – 26] the 

time window and the propagation parameter were 

arbitrarily selected, based on the experience of the 

investigator. Recently we proposed a method for 

adaptive determination of these parameters [20]. 

The method is based on analysis of systems of two 

coupled oscillators in the presence of noise. The 

coupled oscillators were represented by differential 

equation systems whose parameters were pre-se-

lected and thus known in advance. From such dif-

ferential equation systems we generated numerical 

signals for the phases of the oscillators. These gen-

erated phases were input data for the dynamical 

Bayesian inference. As output parameters, for each 

block of inference, we obtained the inferred model 

parameters and noises. These are actually the in-

ferred model parameters and noises at specific time 

points of the evolution of the dynamical systems. 

Since we know the dynamical system in advance, 

we were able to compare the inferred parameters 

with their true values at specific time points.  

As an output value, for each block of inference 

we obtained the concentration matrix Ξ as well and 

from it we calculated the covariance matrix Σ as an 

inverse of the concentration matrix (Σ= Ξ -1). The 

covariance matrix was used as an indicator of the 

quality of the inference. The element of the covari-

ance matrix in the (i,j) position is by definition the 

covariance between the i-th and j-th element of a 

multidimensional random vector. For i=j, the covar-

iance of each element is obtained, which means that 

the matrix elements on the main diagonal of the co-

variance matrix are the variances of the variables. 

Since the standard deviation is the square of the var-

iance, by minimizing the covariance matrix, we are 

minimizing the standard deviations of the inferred 

parameters. Therefore, we used the sum of the 

squares of all the elements of the covariance matrix 

𝑄Σ = 𝑆𝑢𝑚𝑖,𝑗(Σ𝑖,𝑗
2 ) as an indicator of deviation of 

the inferred parameters from their real intrinsic val-

ues. Our simulations showed that the elements on 

the main diagonal of the covariance matrix are dom-

inant, so it makes no difference whether we use the 

sum of the squares of all the elements in the matrix 

or just the sum of the squares of the elements along 

the main diagonal. We denote the sum of the squares 

of all the elements in the matrix as the quadrature 

covariance matrix. 

In addition, we evaluated the differences be-

tween the inferred parameters ci and noises stren-

gths Ei and their true values 𝑐�̃� and 𝐸�̃�: 𝛥𝑐𝑖 = 𝑐𝑖 − 𝑐�̃� 

and 𝛥𝐸𝑖 = 𝐸𝑖 − 𝐸�̃�. We have introduced the 

procedure for the adaptive determination of the time 

window and the propagation parameter by analyz-

ing a system of coupled phase oscillators in the pres-

ence of noise. We have then tested the procedure on 

a system of coupled limit-cycle oscillators in the 

presence of noise and in this paper we will present 

the details of this investigation. 
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3. RESULTS AND DISCUSSION 

The system of coupled limit-cycle oscillators 

that was investigated was comprised of two coupled 

Poincarè oscillators in presence of white noise. The 

differential equations describing this system are 

given by (4): 

�̇�1 = − (√𝑥1
2 + 𝑦1

2 − 1) 𝑥1 − 𝜔1(𝑡)𝑦1 + 𝜀1(𝑥2 − 𝑥1) + ξ1(𝑡) 

�̇�1 = − (√𝑥1
2 + 𝑦1

2 − 1) 𝑦1 + 𝜔1(𝑡)𝑥1 + 𝜀1(𝑦2 − 𝑦1) + ξ2(𝑡) 

 �̇�2 = − (√𝑥2
2 + 𝑦2

2 − 1) 𝑥2 − 𝜔2𝑦2 + 𝜀2(𝑡)(𝑥1 − 𝑥2) + ξ3(𝑡) 
(4)

 

 �̇�2 = − (√𝑥2
2 + 𝑦2

2 − 1) 𝑦2 + 𝜔2𝑥2 + 𝜀2(𝑡)(𝑦1 − 𝑦2) + ξ4(𝑡) 

 

The periodic time-variability in this system 

was introduced in the frequency of the first oscilla-

tor,  

𝜔1(𝑡) = 1 − 0.4sin2𝜋𝑓1𝑡 

and in the coupling from the first to the second 

oscillator, 

𝜀2(𝑡) =  0.2 − 0.1sin2𝜋𝑓2𝑡. 

The noises were white and Gaussian, with no 

correlation between them. In the simulations, the 

strengths of the noises were varied in the interval 

𝐸𝑖𝜖[0.005, 0.05], 𝑖 = 1, 2, 3, 4. The frequency of 

the second oscillator was 𝜔2 = 4.9, while the cou-

pling parameter from the second to the first oscilla-

tor was varied in the interval 𝜀1𝜖[0.005, 005]. The 

frequency of the time variability was changed in the 

interval 𝑓𝑖𝜖 [0.0015, 0.02], 𝑖 = 1, 2. 

In Figure 1 we present a typical result of the 

simulations on how the quadrature covariance ma-

trix QΣ changes with the time window tw and the 

propagation parameter pw. In Figure 1a we present 

the calculated average QΣ,mean of all the blocks of the 

inference, excluding the first two blocks, while in 

Figure 1b the QΣ of the last inference block is given. 

When calculating the 3D graphs such as the one 

shown in Figure 1, all inferred values were averaged 

on between 5 and 50 trajectories in the phase space.  

These results for the Poincarè oscillators con-

firmed the findings of the simulations for the phase oscil-

lators that the dependence of QΣ on the time window 

shows a maximum which is obtained for a value of the 

time window approximately reciprocal to the value used 

for the propagation parameter 𝑡𝑤,𝑚𝑎𝑥 = 1/𝑝𝑤 as shown 

in Figure 2.  

 

Fig. 1. Typical look of the dependance of the quadrature covarince matrix QΣ on the time window tw and the propagation parameter 

pw. In a) the average quadrature covariance matrix QΣ,mean of all the inference blocks, excluding the first two blocks is given   

and in b) the quadrature covariance matrix QΣ,end for the last inference block is given 
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Fig. 2. QΣ, mean as a function of tw for two different values  

of pw. The maximum of the curve is obtained for values  

of the time window approximately given by tw,max=1/pw 

The analysis also shows that the covariance 

matrix increases with increasing propagation para-

meter for a fixed time window, as can be seen in 

Figure 3. The pw dependence of QΣ achieves satura-

tion for very high values of pw. Due to the large drop 

in QΣ with increasing time window, the QΣ axis is 

given in a logarithmic scale. 

 

Fig. 3. QΣ, mean as a function of pw for three different values  

of tw. The curve reaches  a plateu for high values of pw 

Similarly to the case of phase oscillators, for 

all values of tw and pw that put the inference to the 

left of the maximum of the curve QΣ = QΣ(tw, pw = 

const.) the inference enters the regime of delayed 

inference, where the inferred parameters do not 

reach the amplitude of change of the true values for 

the time varying parameters. The delayed inference 

regime obtained for the case of Poincarè oscillators 

is shown in Figure 4. 

 

Fig. 4. Delayed inference regime – when the values of tw and 

pw are such that the inference is on the left of the maximum of 

the curve QΣ = QΣ(tw, pw = const.), the inferred parameter 

(dotted line) does not reach the amplitude of change  

of its true value (solid line) 

For values of tw > tw,max, when pw = const., the 

covariance matrix decreases with increasing tw. At 

the same time, the simulations show that the devia-

tions of the inferred parameters from their true val-

ues also decrease. 

The findings presented in Figures 1–4 confirm 

the findings of the investigation of phase oscillators, 

that in order to achieve the best quality of inference 

the investigator should use time window as big as 

possible. However, by increasing the time window, 

we reduce the possibility of describing the time-var-

iability of the parameters. This is illustrated in 

Figure 5 where we present the influence of the time 

window (the width of the block of inference) on the 

description of the time variability.  

 

Fig. 5. Influence of the time window on the description  

of the time variability: a) narrow block of inference,  

b) wide block of inference, c) optimal block of inference 

In Figure 5a a narrow block of inference, i.e. 

small time window is presented, while in Fig.5b a 

wide block of inference is presented. It can be seen 
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that when a narrow block of inference is used, more 

data points are inferred, hence the time variability is 

better described. If a wide block of inference is 

used, only few points would be obtained and the 

time-variability of the parameters would be missed. 

For this reason, in the algorithm proposed in [20] 

the optimal time window is chosen as one eight of 

the period of the fastest changing parameter. In this 

way there will be 8 data points (8 inference blocks) 

describing one full oscillation of the fastest chan-

ging parameter. For all the other time-varying para-

meters there will be more inferred points describing 

their time variability. This is shown in Figure 5c, 

where the optimal time window is used. 

The frequency of the fastest changing parame-

ter is obtained by performing an initial inference 

with a fixed, reasonably large, propagation parame-

ter and a time window as small as possible [20]. In 

this way, the best possible inference of the time var-

iability is achieved, at the expense of greater noise. 

For very small values of the time window the Mat-

lab code for dynamical Bayesian inference will not 

work because the calculated concentration matrix 

will be too small and the code will give error mes- 

sage “Singular Matrix Error” for the calculated co-

variance matrix. This will define the lower limit of 

the time window that can be used. Once the initial 

inference of the parameters of the model and the 

noises strengths is performed, a fast Fourier trans-

form of the parameters is performed. By analyzing 

the dynamics of the parameters and their fast Fou-

rier transforms, the highest frequency fmax of param-

eter change is determined and from there, the corre-

sponding period Tmin = 1/fmax is determined. The op-

timal time window is then taken as tw,opt = Tmin/8. 

For the case of coupled Poincarè oscillators 

that is under investigation, this is illustrated in 

Figure 6. Since there are 2×25 base functions in the 

dynamical Bayesian inference method, there will be 

2×25 parameters respectively. In Figure 6 only the 

four parameters of interest are shown. Figure 6a 

shows the inferred parameters from the initial 

inference, while Figure 6b shows the fast Fourier 

transforms of the inferred parameters, respectively. 

In Figure 6 the maximal frequency of the time 

variability of the parameters is fmax = 0.01 Hz, so the 

inferred optimal time window would be 

 tw,opt = Tmin/8 = 1/8 fmax = 12.5 s. 

 

Fig. 6. Initital inference of the parameters of the system of coupled Poincarè oscillators. Only the four parameters of interest  

are shown: a) the inferred parameters, b) the fast Fourier transforms of the inferred parameters, respectively. 

Once the time window is determined, accord-

ing to Fig.3, the propagation parameter should be as 

small as possible. At the same time, the propagation 

parameter should be greater than 1/tw,opt, in order not 

to enter the delayed inference regime. In order to 

test whether the proposed algorithm in [20] is valid 

for the case of coupled Poincarè oscillators, we 

investigated the difference between the inferred 

time varying parameters and their true values for 

different strengths of the noise and for different 

frequencies of the time varying parameters, corres-

ponding to the frequency range of the cardiorespira-

tory interactions. We evaluated this difference by 

calculating the mean square error (MSE) between 

the time series of the inferred parameters with opti-

mal time windows tw,opt and their true values at the 
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corresponding times. The first two blocks of the 

inference were again excluded. The MSE was calcu-

lated for different values of the propagation param-

eter and a graph MSE = MSE(pw) was constructed. 

In Figure 7 a typical example of the graph MSE = 

MSE(pw) is shown. In parallel with the MSE investi-

gation, we followed how the inferred parameters 

describe the time variability of their true values by 

following the graphs like the one presented in Fig-

ure 4. 

 

Fig. 7 Typical example of the dependance of the mean square 

error MSE between the four inferred parameters and their true 

value as a function of the propagation parameter pw,  

for the optimal value of the time window tw 

From such investigations we confirmed that 

the optimal value of the propagation parameter de-

pends both on the value of the optimal time window 

tw,opt (i.e. on the frequency of the fastest changing 

time variable parameter fmax) and on the strength of 

the noise Ei. For the noise strengths under investiga-

tion we confirmed that the optimal propagation pa-

rameter is approximately linearly dependent on fmax. 

The slope and the intercept of the linear fit were 

found to depend on the inferred noise strengths rep-

resented by 𝐸𝑠𝑞𝑟𝑡 = √𝐸11
2 + 𝐸22

2  , where Eii are the 

inferred noise strengths along the main diagonal. 

The dependence was found to be approximately de-

scribed by inverse power law and the coefficients of 

the inverse power law were different from the case 

of coupled phase oscillators. However, the values 

obtained for pw,opt in this way were always smaller 

than the ones obtained for the coupled phase oscil-

lators, which is expected, since the case of the phase 

oscillators can be regarded as more general and en-

compassing the case of limit cycle oscillators. This 

is shown in Figure 8 (reprinted from [20]) and it 

means that the algorithm proposed in [20] will give 

satisfactory results, with a bit more noise included 

in the inference, compared to taking smaller values 

for pw,opt.  

 

Fig. 8. Optimal propagation parameter as a function  

of the maximal frequency of parameter change and the noise, 

for the cases of coupled phase oscillators and coupled 

Poincarè oscillators (reprint from [20]) 

4. CONCLUSION 

In this paper, we analyzed a system of Poincarè 

limit-cycle oscillators in order to check the pro-

posed algorithm for determining the time window 

and the propagation parameter within the dynamic 

Baesian inference method. The analysis is aimed at 

establishing a protocol for adaptive dynamic Bayes-

ian inference that will give a more accurate descrip-

tion of the model that describes a system of coupled 

oscillators in the presence of noise. The results con-

firm that the algorithm proposed in [20] will give an 

improved inference of the model that will describe 

the time variable system and thus allow more accu-

rate examinations of the coupling functions that de-

scribe the interactions between different oscillatory 

systems in nature. 

REFERENCES 

  [1] Stefanovska, A.: Coupled oscillators: complex but not 

complicated cardiovascular and brain interactions, IEEE 

Engineering in Medicine and Biology Magazine, Vol. 26, 

No. 6, 25–29 (2007). 

  [2] Schäfer, C., Rosenblum, M. G., Kurths, J., Abel, H. H.: 

Heartbeat synchronized with ventilation, Nature, Vol. 392, 

No. 6673, 239–240 (1998). 

  [3] Elstad, M., O’Callaghan, E. L., Smith, A. J., Ben-Tal, A., 

Ramchandra, R.: Cardiorespiratory interactions in humans 

and animals: rhythms for life, American Journal of 

https://ieeexplore.ieee.org/document/4385566
https://ieeexplore.ieee.org/document/4385566
https://ieeexplore.ieee.org/document/4385566
https://www.nature.com/articles/32567
https://www.nature.com/articles/32567
https://journals.physiology.org/doi/full/10.1152/ajpheart.00701.2017


92 D. Lukarski, H. Spasevska, T. Stankovski 

J. Electr. Eng. Inf. Technol., 5 (2) 85–92 (2020) 

Physiology-Heart and Circulatory Physiology, Vol. 315, 

No. 1, H6–H17 (2018). 

  [4] Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical 

networks, Science, Vol. 304, No. 5679, 1926–1929 (2004). 

  [5] Park, H. J., Friston, K.: Structural and functional brain 

networks: from connections to cognition, Science, Vol. 

342, No. 6158, 1238411 (2013). 

  [6] Eckberg, D. L.: Topical review: The human respiratory 

gate, The Journal of Physiology, Vol. 548, No. 2, 339–352 

(2003). 

  [7] Rosenblum, M. G., Pikovsky, A. S.: Detecting direction of 

coupling in interacting oscillators, Phys. Rev., Vol. 64, No. 

4, 045202(R) (2001). 

  [8] Stankovski, T., Duggento, A., McClintock, P. V. E.,and 

Stefanovska, A.: Inference of time-evolving coupled dyna-

mical systems in the presence of noise, Phys. Rev. Lett.,, 

Vol. 109, No. 2, 024101 (2012). 

  [9] Tokuda, I. T., Jain, S., Kiss, I. Z., Hudson J. L.: Inferring 

Phase Equations from multivariate time series, Phys. Rev. 

Lett., Vol. 99, No. 6, 064101 (2007). 

[10] Schwabedal, J. T. C., Pikovsky, A.: Effective phase 

dynamics of noise-induced oscillations in excitable 

systems, Phys. Rev. E,, Vol. 81, No. 4, 046218  (2010). 

[11] Galán, R. F., Ermentrout,  G. B., Urban,  N. N.: Efficient 

Estimation of phase-besetting curves in real neurons and 

its significance for neural-network mModeling, Phys. Rev. 

Lett., Vol. 94, No. 15, 158101 (2005). 

[12] Timme, M.: Revealing Network Connectivity from res-

ponse dynamics, Phys. Rev. Lett., Vol. 98, No. 22, 224101 

(2007). 

[13] Stankovski, T., Cooke, W. H., Rudas, L., Stefanovska, A., 

Eckberg, D. L.: Time-frequency methods and voluntary 

ramped-frequency breathing: a powerful combination for 

exploration of human neurophysiological mechanisms, 

Journal of Applied Physiology, Vol. 115, No. 12, 1806–

1821 (2013). 

[14] Friston, K. J., Harrison, L., Penny, W.: Dynamic causal 

modelling, Neuroimage, Vol. 19, No. 4, 1273–1302 

(2003). 

[15] Kuramoto, Y.: Chemical Oscillations, Waves, and Turbu-

lence, Berlin: Springer-Verlag (1984). 

[16] Duggento, A., Stankovski, T., McClintock, P. V. E., Stefa-

novska, A.: Dynamical Bayesian inference of time-evol-

ving interactions: from a pair of coupled oscillators to 

networks of oscillators, Phys. Rev. E,, Vol. 86, No. 6, 

061126  (2012). 

[17] Stankovski, T., Pereira, T., McClintock, P. V. E., Stefa-

novska, A.: Coupling functions: universal insights into 

dynamical interaction mechanisms, Rev. Mod. Phys., Vol. 

89, No. 4, 045001 (2017).  

[18] Stankovski, T., Pereira, T., McClintock, P. V. E., Stefa-

novska, A.: Coupling functions: dynamical interaction 

mechanisms in the physical, biological and social sciences, 

Phil. Trans. R. Soc. A, Vol. 377, No. 2160, 20190039 

(2019). 

[19] Stankovski, T., Ticcinelli, V., McClintock, P. V., Stefa-

novska, A.: Neural cross-frequency coupling functions, 

Frontiers in systems neuroscience, Vol. 11, No. 33 (2017). 

[20] Lukarski, D., Ginovska, M., Spasevska, H., Stankovski, T.: 

Time window determination for inference of time-varying 

dynamics: application to cardiorespiratory interaction, 

Front. Physiol., Vol. 11, 341, (2020). 

[21] Nakao, H., Yanagita, T., Kawamura, Y.: Phase-reduction 

approach to synchronization of spatiotemporal rhythms in 

reaction-diffusion systems, Phys. Rev. X, Vol. 4, No. 2, 

021032 (2014). 

[22] Smelyanskiy, V. N., Luchinsky, D. G., Stefanovska, A., 

McClintock, P. V. E.: Inference of a nonlinear stochastic 

model of the cardiorespiratory interaction, Phys. Rev. Lett., 

Vol. 94, No.  9, 098101 (2005). 

[23] Bayes, T.: Phil. Trans. R. Soc. London, Vol. 53, No. 370, 

(1763). 

[24] Iatsenko, D., Bernjak, A., Stankovski, T., Shiogai, Y., 

Owen-Lynch, P. J., Clarkson, P. B. M., McClintock, P. V. 

E., Stefanovska, A.: Evolution of cardiorespiratory inter-

actions with age, Phil. Trans. R. Soc. A, Vol. 371, No. 

1997, 20110622 (2013). 

[25] Stankovski, T., Petkoski, S., Raeder, J., Smith, A. F., 

McClintock, P. V. E., Stefanovska, A.: Alterations in the 

coupling functions between cortical and cardio-respiratory 

oscillations due to anaesthesia with propofol and sevoflu-

rane, Phil. Trans. R. Soc. A Vol. 374, No. 2067, 20150186 

(2016). 

[26] Ticcinelli, V., Stankovski, T., Iatsenko, D., Bernjak, A., 

Bradbury, A. E., Gallagher, A. E., Clarkson, P. B. M., 

McClintock, P. V. E., Stefanovska, A.: Coherence and 

coupling eunctions reveal microvascular impairment in 

treated hypertension, Front. Physiol., Vol. 8, 749 (2017).

 

 

https://journals.physiology.org/doi/full/10.1152/ajpheart.00701.2017
https://journals.physiology.org/doi/full/10.1152/ajpheart.00701.2017
https://science.sciencemag.org/content/304/5679/1926
https://science.sciencemag.org/content/342/6158/1238411
https://science.sciencemag.org/content/342/6158/1238411
https://physoc.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-7793.2003.00339.x
https://physoc.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-7793.2003.00339.x
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.045202
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.045202
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.024101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.024101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.064101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.064101
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.046218
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.158101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.158101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.224101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.224101
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882935/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882935/
https://www.sciencedirect.com/science/article/abs/pii/S1053811903002027?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1053811903002027?via%3Dihub
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.061126
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.061126
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.045001
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.045001
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0039
https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0039
https://www.frontiersin.org/articles/10.3389/fnsys.2017.00033/full
https://www.frontiersin.org/articles/10.3389/fphys.2020.00341/full
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021032
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021032
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.098101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.098101
https://royalsocietypublishing.org/doi/10.1098/rsta.2011.0622
https://royalsocietypublishing.org/doi/10.1098/rsta.2011.0622
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0186
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0186
https://www.frontiersin.org/articles/10.3389/fphys.2017.00749/full

