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A b s t r a c t: This study presents the use of various algorithms for control of a field of heliostats, through which a 

thermal power plant with concentrated solar energy is controlled. The design of the control algorithms consists of 

several steps. First, the Sun tracking alghorithm is presented for a specific location with an accuracy of ± 0.0003°. In 

order to obtain the mathematical model of the system, the real system is identified according to the gray box and the 

least-square method. The data used to identify the system is generated by step excitation on the real system, for a 

specific sampling period. The resulting mathematical model is used to design and simulate a continuous and discrete 

Proportional-Integral-Derivative (PID) controller, Mamdani and Sugeno fuzzy logic controllers, as well as ANFIS 

based fuzzy logic controller. The results of the applied controllers are analyzed and compared, based on the output 

overshoot, the rise and settling time. It can be concluded that we got best results (least settling time and the least 

overshoot) when fuzzy logic controller with ANFIS was used, while in terms of speed and rise time, the best results 

were obtained when discrete PID control algorithm was used. The study is extension of the work given in [23]. 

Key words; heliostat; Sun tracking algorithm; least square; PID; fuzzy logic conrol;  

adaptive neuro-fuzzy inference system (ANFIS) 

КОМПАРАТИВНА АНАЛИЗА НА РАЗЛИЧНИ АЛГОРИТМИ ЗА УПРАВУВАЊЕ  
НА ПОЛЕ ОД ХЕЛИОСТАТИ 

А п с т р а к т: Во овој труд се презентирани различни алгоритми за управување на поле од хелиостати преку 

кое се управува термоелектрана со концентрирана соларна енергија. Дизајнот на управувачките алгортми се 

состои од неколку чекори. Најпрво e претставен алгоритмот за следење на Сонцето за конкретна локација со 

точност од ±0.0003°. Со цел да се добие математички модел на системот, направена е идентификација на 

реалниот систем според методот на сива кутија и најмали квадрати. Податоците кои се користат за идентифи-

кација на системот се генерирани со отскочна возбуда врз реалниот систем и одреден периода на семплирање. 

Добиениот математички модел се користи за дизајн и симулација на континуиран и дискретен PID управувач, 

фази логички управувач на Мамдани и Сугено, како и на фази логички управувач базиран на ANFIS. 

Резултатите од применетите управувачи се компаративно анализирани врз основа на прескокот, времето на 

пораст и времето на смирување. Може да се заклучи најдобри резултати (најкратко време на смирување и 

најмал прескок) дека се добиени кога се користи фази-логички управувач со ANFIS, додека во поглед на 

брзината и времето на пораст најдобри резултати има при користење на дискретен PID управувач. Трудот е 

проширување на истражувањата изложени во [23]. 

Клучни зборови: хелиостат; алгоритам за следење на Сонцето; најмали квадрати; PID;  

фази логичко управување; aдаптивен неуро-фази механизам на заклучување (ANFIS) 

1. INTRODUCTION  

Heliostat is a motorized mirror which is used 

to reflect the solar radiation into a receiver mounted 

on a tower. Heliostats are a basic component of a 

thermal power plant with a tower and even 40–50% 

of the cost of the entire plant. Recently, more and 

more investments are being made in research and 
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analysis to reduce the cost of heliostats and thus the 

plant itself [1], [2]. 

The aim of heliostat is to reflect the sunlight on 

predefined target and therefore, for heliostat con-

trol, the orientation of the mirror needs to be known 

in order to determine deviations and precisely con-

trol the actuators to minimize the error of the overall 

system. The conventional approach uses open-loop 

calibration and control, while modern solutions use 

feedback sensors and closed-loop control [19]. A 

prerequisite for open loop control is very small sta-

tistical error or backlash and stable, observable sys-

tem behavior. Calibration effort can be high with er-

ror systems. In addition, the heliostat geometry 

model must be appropriate to describe the real im-

perfections that can be changed [18]. 

Since the axis of each heliostat is driven by an 

electric motor, much of the heliostat control chal-

lenge comes down to control of the motor. An elec-

tric motor is a device that converts electrical energy 

into mechanical energy. The principle of working is 

the interaction between the magnetic fields gener-

ated by the stator or motor rotor magnets and the 

magnetic field created by the electric current in the 

windings, which generates a force in the form of 

torque on the motor axis. In applications such as the 

heliostat, DC motors are most commonly used for 

several reasons: higher starting power and torque re-

quired for the minimum heliostat rotation time for a 

certain angle, faster start-up response time, stopping 

or acceleration, which makes them more accurate 

and easier to control, simpler to install and cheaper. 

The DC motor is controlled by changing the 

voltage with a PWM signal from the controller. The 

most commonly controlled variables are speed and 

position, and 95% of industry applications use a PID 

controller [7]. However, in processes where the dy-

namics change due to nonlinearity and interference, 

traditional PID controllers can not cope and system 

oscillations may occur due to precisely (crisp) ad-

justed controller parameters. The fuzzy logic con-

troller is a good alternative to the PID controller, as 

it can handle nonlinear systems and can be designed 

using human operator knowledge without knowing 

the mathematical model of the system. Although the 

fuzzy logic controller does not have a better re-

sponse in the time domain than the PID controller, 

it can still be applied to systems that have rapid 

changes, unlike PID which will need to adjust the 

values of the control parameters [20]. 

The main limitations of fuzzy logic controllers 

are the lack of a systematic design methodology and 

the difficulty in predicting the stability and robust-

ness of a controlled system. Therefore, in many ap-

plications, fuzzy logic controllers are improved by 

fine tuning with the help of neural networks, i.e. the 

so-called hybrid fuzzy-neural controllers, which use 

a neural network to determine the rules and to make 

a conclusion [7]. 

This paper presents the open-loop control of 

heliostats as a systems, (Sun tracking algorithm and 

encoders) based on closed-loop position control of 

the DC motor explained in [19]. 

In order to make a comparative analysis of the 

above-mentioned different control algorithms in DC 

motors, i.e. indirectly in those used in the heliostat 

system, the paper performs design and selection of 

control algorithm and strategy for control, described 

in detail. Several types of control algorithms are 

used to control the heliostat position: PID, fuzzy-

logic, and ANFIS (combination of fuzzy-logic con-

trol and neural networks), after which a comparative 

analysis is made. 

In order to achieve the aforementioned control 

goal, several steps are used to design and select the 

control algorithm, i.e. (Figure 1): 

1) identification of the real system and ob-

taining a mathematical model; 

2) control algorithm design; 

3) implementation on the mathematical 

model. 

 

Fig. 1. Heliostat control algorithms 

Analysis of the obtained results and selection 

according to the overshoot, settling time and rise 

time. 

2. SUN TRACKING ALGORITHM 

This paper presents the algorithm for tracking 

the Sun, i.e. the procedure for calculating the solar 

angles, azimuth and zenith, with an error of 

±0.0003° in the period from -2000 to 6000. The 

algorithm was developed by the National Rene-

wable Energy Laboratory (NREL) based on the 
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book Astronomical Algorithms. The NREL report 

summarizes the complex elements of the algorithm 

contained in the book to calculate the solar position, 

while modifying the algorithm to accommodate so-

lar applications [21]. For example, in Astronomical 

Algorithms the azimuth angle is measured west to 

south, but in solar applications it is measured east to 

north. Also, the longitude of the observer is consid-

ered positive west or negative east of Greenwich, 

while for solar applications it is the other way 

around (Figure 2). 

 
Fig. 2. Different vectors used in Sun tracking algorithm 

The algorithm presented by NREL is extensive 

and contains many parameters for the correction of 

time and anomalies of the Earth, the Sun, the atmos-

phere and other influencing factors, but to obtain the 

angles of the solar vector S⃗  (γs,αs) the general equa-

tions are used: 

𝛿 = 23.45 × sin [(
360

365
) × (284 + 𝑛)] (1) 

𝜔 = 15 × (𝑡 − 12) (2) 

𝛼𝑠 = sin−1[cos(𝜑) cos(𝛿) cos(𝜔) + sin(𝜑) sin(𝛿)] (3) 

𝛾𝑠 = cos
−1 [

sin(𝛿) cos(𝜑) − cos(𝛿) cos(𝜔) sin(𝜑)

cos(𝛼𝑠)
] (4) 

If sin(ω) > 0, then γs = 360 – γs, otherwise it 

remains the same. 

Calculating the heliostat rotation angles requi-

res the heliostat vector 𝐻⃗⃗  (γh,αh) which is the normal 

vector of the heliostat mirror and is obtained using 

the solar vector and the receiver vector 𝑇⃗  (γt,αt). If 

we assume that the field of heliostats together with 

the receiver is a coordinate system with center in the 

receiver (0, 0, H) so that the positive part of the x 

axis is east and the positive part of the y axis is north, 

then each heliostat has certain coordinates with 

respect to the receiver . The height of the receiver H 

and the heliostats h do not change and are 35 m and 

1.8 m, respectively. The angles of the heliostat 

vectors are constant for each heliostat and they 

change only by changing its coordinates, i.e. the 

location of the heliostat field. For a heliostat at a dis-

tance of 40 m east and 40 m north, the receiver an-

gles are obtained: 

𝑑 = √𝑥2 + 𝑦2 = 56.57 m (5) 

𝛼𝑡 = tan−1 (
𝐻 − ℎ

𝑑
) = 30.41 ° (6) 

𝛾𝑡 = 180 ° + tan
−1 (

𝑥

𝑦
) = 225 ° (7) 

The heliostat vector 𝐻⃗⃗  is calculated by con-

verting the angles of the solar vector and the re-

ceiver vector into three-dimensional coordinates (x, 

y, z). So the two angles of the solar vector get the 

coordinates [22]: 

{

𝑥1 = cos(𝛼𝑠) × cos(𝛾𝑠 × −1)

𝑦1 = cos(𝛼𝑠) × sin(𝛾𝑠 × −1)

𝑧1 = sin(𝛼𝑠)

(8) 

The two angles of the receiver vector get the 

following coordinates: 

{

𝑥2 = cos(𝛼𝑡) × cos(𝛾𝑡 × −1)

𝑦2 = cos(𝛼𝑡) × sin(𝛾𝑡 × −1)

𝑧2 = sin(𝛼𝑡)

(9) 

The angles of the heliostat vector are calcu-

lated using the coordinates (x, y, z): 

{
 
 

 
 𝑥 =

𝑥1 − 𝑥2
2

+ 𝑥2

𝑦 =
𝑦1 − 𝑦2
2

+ 𝑦2

𝑧 =
𝑧1 − 𝑧2
2

+ 𝑧2

(10) 

𝛼ℎ = sin
−1 (

𝑧

√𝑥2 + 𝑦2 + 𝑧2
) (11) 

𝛾ℎ = tan2−1(𝑦 × −1, 𝑥) (12) 

Since the function tan2–1 limits the angle γh for 

values from –180° to 180°, the negative values are 

shifted by 360°, thus obtaining the angles shown in 

Figure 3. 
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The angles αh and γh can be further adjusted so 

that the angle γh instead of the zero position is the 

north axis, will be the south axis which reduces the 

movement (figure 4). In addition to this, the 

elevation angle αh can be moved by 90° so that the 

zero position will be the zenith axis (also called the 

heliostat parking position used in strong winds). 

Of particular interest is the change in angles at 

intervals of 5 s when updating the heliostat position. 

From Table 1 it can be seen that there is a period 

when the change in one of the angles (in this case 

αh) is very small and the actuator can not move due 

to the encoder resolution, i.e. the minimum rotation 

angle. In this case, the microcontroller does not 

move the actuator until the difference in angle 

change is equal or greater than the minimum en-

coder resolution. Also, when the encoder pulses are 

a decimal number, they are rounded to an integer so 

that the difference is stored in the microcontroller's 

memory for later compensation

 
           t (h)                                                                                                  t (h)   

         a)                                                                                            b) 
Fig 3. Heliostat vector angles 

a) Azimuth heliostat angle. b) Elevation heliostat angle 

 
            t (h)                                                                                                  t (h) 

       a)                                                                                            b)  
Fig. 4. Adjusted heliostat vector angles 

a) Azimuth heliostat angle.  b) Elevation heliostat angle 
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T a b l e  1 

Difference in the angles for period of 5 s 

3. IDENTIFICATION 

Mathematical models are commonly used to 

describe system behavior, and thus to simulate and 

design a controller. Depending on the knowledge (a 

priori information) about the system, obtaining the 

mathematical model can be done in the following 

ways [4]: 

• Using white-box method – the mathematical 

model is obtained by applying the physical prin-

ciples of modeling the system, while it remains 

to determine the most commonly given param-

eters. 

• Using gray-box method – modeling occurs with 

the development of state space models with a 

known structure. For a given input/output sys-

tem, there are infinite realizations with spatial 

variables that give the same connection for a 

given input/output. However, a particular struc-

ture may be desirable for identification. The 

limited optimization of the model parameters 

provides the necessary framework for the iden-

tification of this method. 

• Using black-box method – the modeling uses in-

put/output data without prior knowledge of sys-

tem behavior. The mathematical model is ob-

tained using neural networks and algorithms for 

their optimization. 

Figure 5 shows the schematic and block dia-

gram of a permanent magnet DC motor. By apply-

ing the laws of physics, the mathematical models is 

obtained, i.e. the transfer function of the system. 

The detailed parameters of the PMDC motor used 

are not known, so the gray box method is applied 

for their identification (although it can be said that 

there is not much difference with the black-box 

method except the limitation). 

The Laplace transformation is applied to the 

obtained mathematical model, which gives the 

transfer function that represents the relationship be-

tween the voltage and the rotational speed of the 

PMDC motor [13]: 

𝐺1(𝑠) =
𝜔𝑚(𝑠)

𝑣𝑎(𝑠)
=

1/𝑘𝑏
𝑡𝑚𝑡𝑒𝑠

2 + 𝑡𝑚𝑠 + 1
, (13) 

where te = La/Ra is an electrical time constant, tm = 

RJ/ktkb is the mechanical time constant, kt and kb are 

torque constants and the back voltage EMF. Mathe-

matically, velocity is a derivative of position with 

respect to time, which means that position is ob-

tained by integrating velocity with respect to time 

[15]: 

𝜃𝑚(𝑡) = ∫𝜔𝑚(𝑡)𝑑𝑡 (14) 

which in s domain means multiplying the transfer 

function by s–1: 

𝐺(𝑠) =
𝜃𝑚(𝑠)

𝑣𝑎(𝑠)
=
1

𝑠
× 𝐺1(𝑠) =

1/𝑘𝑏
𝑡𝑚𝑡𝑒𝑠

3 + 𝑡𝑚𝑠
2 + 𝑠

(15) 

 

Fig. 5. Schematic drawing of PMDC motor 

The same principle is used to obtain the 

mathematical model and the transfer function of the 

linear actuator. In [14] the obtaining of the second 

order portable f for the velocity/voltage ratio is 

shown, while in [16] the third order transfer 

function is obtained which later due to a simpler 

analysis is approximated to the first order function. 

The identification of the parameters of the 

transfer function is performed by applying the least-

squares method on the output data that are generated 

with step excitation. The purpose is to give N output 

data of the variables 𝑦 = [y[0], 𝑦[1]⋯ , 𝑦[𝑁 − 1]]
𝑇

 

to get the best prediction (or approximation) of y us-

ing p descriptive variables (or regressors) ) φi [k], 

for i = 1,…, p, so that the predictions 𝑦̂ =

[𝑦̂[0], 𝑦̂[1]⋯ , 𝑦̂[𝑁 − 1]]
𝑇

 are collectively at mini-

mum (vector) distance from y [4]. Assume that the 

approximation of y[k] is through a linear model: 

𝑦̂ = ∑𝜃𝑖𝜑𝑖[𝑘] = 𝜑𝑇[𝑘]𝜃

𝑝

𝑖=0

, (16) 

Time γh Difference Min. angle Encoder impulses 

7:00:00 –25.52435 / / 0 

7:00:05 –25.50521 0.019132 0.0124 1.54 ~ 2 

 αh    

7:00:00 30.029853 / / 0 

7:00:05 30.029754 0.000099 0.0105 0.09~0 
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where θ is the unknown set of free parameters that 

need to be optimized to achieve the goal of the 

smallest squares. We introduce: 

Ф = [𝜑[0], 𝜑[1]⋯ , 𝜑[𝑁 − 1]]
𝑇

(17) 

𝑍 = 𝑦 𝑈 Ф (18) 

since each φ[k] is a p × 1 vector, Ф  is an N × p ma-

trix. The Z matrix consists of known data. Then, the 

optimization problem can be written as: 

min
𝜃
𝐽𝑁(𝑍, 𝜃) = ||𝑦 − 𝑦̂||2

2
= (𝑦 − 𝑦̂)𝑇(𝑦 − 𝑦̂), (19) 

where 𝑦̂ = Ф𝜃. Finding the minimum can be 

achieved by the method of descending gradient 𝜕𝐽/ 
𝜕𝜃 = 0: 

𝜕𝐽

𝜕𝜃
= −2Ф𝑇(𝑦 − Ф𝜃) = 0 (20) 

𝜃̂ = (ФТФ)−1ФТ𝑦 (21) 

where 𝜃 represents the minimum obtained from the 

optimization. 

Step excitation of 15 % (3.6 V) of the rated 

voltage (24 V) is used to obtain the output data y at 

input due to nonlinear reduction, while displace-

ment and velocity are measured with the microcon-

troller ESP32 and encoder with a sampling period 

of 50 ms (20 Hz) [3]. The heliostat is mounted with-

out mirrors, so that the instantaneous mass that af-

fects the movement of the DC motor is 85 kg (hori-

zontal pipe and construction), which is almost half 

of the total mass of 180 kg (Figure 6). 

 

Fig. 6. Real system used for identification 

The parameters of the tested PMDC motor and 

gears are given in Table 2. 

          T a b l e  2 

Parameters of PMDC motor 

Voltage, V 24 

Output power, W 40 

No-load speed, rpm 3000 

No-load current, A 1 max 

Load, mNm 136 

Load speed, rpm 2800 

Load current, A 2.6 

Gear ratio 1:180 

Reduction speed, rpm 16 

Max. load, Nm 10 

By using MATLAB, the curves from the meas-

ured data and the identification of the system are 

calculated, and shown in  Figure 7. The accuracy of 

the obtained transfer function of the identification 

system is 87.4 % and it is given by: 

𝐺1(𝑠) =
𝜔𝑚(𝑠)

𝑣𝑎(𝑠)
=

0.4055

0.0265𝑠2 + 0.4741𝑠 + 1
(22) 

 

Fig. 7. Real and simulated system output with 15 % step input 

4. PID CONTROL ALGORITHM 

The PID controller is the most widely used 

control algorithm. Most feedback loops are con-

trolled by this algorithm or small variations of it. It 

can be implemented in various forms, as a standal-

one controller, as part of a DDC (direct digital 

control) or hierarchically distributed process control 

system. The mathematical representation of the PID 

controller is [5]: 
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𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

) , (23) 

where u is the control signal and e represents the 

control error (e = r–y). The control signal is a set of 

three terms: P-term is proportional to the error, I is 

proportional to the error integral, and D-term is pro-

portional to the derivation (change) of the error. The 

control parameters are the proportional coefficient 

Kp, the integration time Ti, and the differentiation 

time Td. 

In cases where only proportional control is 

used, the control algorithm is represented only by 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡), which means that the control signal 

is proportional to the error. The change of the coef-

ficient Kp affects the change of the system error in 

the steady state and the occurrence of oscillations 

and overshoot. Thus, increasing Kp reduces the error 

in the steady state, but increases the response oscil-

lations [5]. 

The main function of the integration term I is 

to ensure that the response of the system matches 

the reference value in the steady state. With propor-

tional control, there is a steady error, while with the 

I-term, a small positive error will always lead to an 

increase in the control signal, and a negative error 

will give a decreasing control signal. In cases where 

the integration time Ti = ∞, the PI control combina-

tion switches to P control only. The steady state er-

ror is removed when Ti has finite values. For large 

values of integration time, the rise time is large, 

while for small values of Ti the rise time of the re-

sponse is shorter, but oscillations and overshoot oc-

cur (increase of settling time). In the I term, the 

problem arises from the limitations of the physical 

systems (actuator length, limited speed, high la-

tency) which leads to a situation where the con-

trolled system reaches the limit, and the term con-

tinues to integrate the error and increases (windup). 

Then the error needs to have the opposite sign for a 

longer period of time for the control signal to return 

to normal. The consequence is that any controller 

with integrated action can cause major changes 

when the system is saturated (reaches the limit). 

This problem can be overcomed in several ways: 

• limiting changes of the reference value; 

• back-calculation – when the output is in satura-

tion state, the control term is also recalculated 

so that its new value gives an output at the satu-

ration limit. And the term is reset dynamically 

with time constant Tt; 

• tracking – another input is added to the control-

ler which is a tracking signal and is followed by 

the control signal; 

• conditional integration – the term is also exclud-

ed when the control is far from stady state and 

thus the term is used under certain conditions, 

otherwise it is constant. 

The D term is used to improve the stability of 

a closed loop. Usually due to the dynamics of the 

process, it takes time to notice the change of the 

control variable in the response. This will cause the 

control system to be delayed in correcting the error. 

The action of the PD control can be described so that 

the control is proportional to the predicted response 

of the system, where the prediction is made by ex-

trapolating the error from the tangent to the error 

curve. It can be said that the term D is used to pre-

dict the error in the future. The disadvantage of us-

ing the term D is that the ideal output has a very high 

coefficient for high frequency signals. This means 

that the high frequency measuring noise will gener-

ate large variations of the control signal. This prob-

lem is overcome by implementing a first-order filter 

with a time constant Td/N. Thus, for small s the 

transfer function is approximately sKpT, and for 

large s it is equal to KpN. The approximation acts as 

a derivative for the low frequency components of 

the signal, and the high frequency coefficient is lim-

ited to KpN. Thus, high frequency measurement 

noise is amplified mostly by the KpN factor. The ob-

tained transfer function for the PID controller is: 

𝐶(𝑠) = 𝐾𝑝 (1 +
1

𝑠𝑇𝑖
+

𝑠𝑇𝑑

1 +
𝑠𝑇𝑑
𝑁

) (24) 

In some cases, instead of filtering the D term, 

it is possible to filter the measured signal, which 

guarantees that the high frequency noise will not 

produce large control signals (high frequency roll-

off). 

The adjustment of the PID parameters is done 

with the frequency response method of Ziegler-

Nichols. This method is the second of the two clas-

sical methods for determining the parameters of PID 

controllers presented by Ziegler and Nichols in 

1942 and is used to adjust the parameters in a closed 

loop. These methods are still widely used, in their 

original form or with some modification. They are 

often the basis of adjustment procedures used by 

controller manufacturers and the processing indus-

try. The methods are based on determining some 

characteristics of the process dynamics. The control 

parameters are then expressed in terms of features 

with simple formulas. These methods have a major 
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impact on the practical adjustment of the PID con-

troller even if they do not result in a good setup. Ad-

ditional extensions of the method are presented in 

[5]. It is often necessary to supplement the design 

method with manual adjustment to obtain the de-

sired behavior of the closed loop. The method con-

sists of calculating the critical (limit) values of the 

parameters Kc and Tu with which the system is on 

the edge of stability, i.e. oscillates. Kc represents the 

critical amplification, while Tu represents the period 

of one oscillation. Kc is calculated using the Ruth-

Hurz criterion for closed system stability at Ki, 

Kd = 0 (Ti = ∞, Td = 0) [17]. 

𝐺(𝑠) =
322.7

𝑠
𝐺1(𝑠) (25) 

𝑇(𝑠) =
𝐾𝑝𝐺(s)

1 + 𝐾𝑝𝐺(𝑠)
(26) 

The critical value is Kc <0.1369. Substitution 

of Кc gives ωcr = 6,167 rad/s. 

𝑇𝑢 =
2𝜋

𝜔𝑐𝑟
= 1.0183 s (27) 

Then, by applying the obtained values accord-

ing to Table 3, Kp = 0.08214, Ti = 0.5092 and  

Td = 0.1273 are calculated, while Ki = Kp/Ti and  

Kd = Kp·Td. 

T a b l e  3 

PID tuning with Ziegler-Nichols closed-loop 

method 

 Kp Ti Td 

P controller 0.5 Kc ∞ 0 

PI controller 0.45 Kc 
𝑇𝑢
1.2

 0 

PID controller 0.6 Kc 
𝑇𝑢
2

 
𝑇𝑢
8

 

 

The response of the system with the calculated 

PID controller and step excitation is shown in Fig-

ure 8. It can be noticed that there is a significant 

overshoot of 74.2% and a settling time of 4.5 s. For 

this purpose, additional manual tuning of the param-

eters of the PID controller is used, so that by in-

creasing Kp the overshoot is reduced and the re-

sponse is faster, while by increasing the Td the os-

cillations and the settling time are reduced. The 

newly obtained PID controller has values for Kp = 

0.1232 and Td = 0.2546, so the overshoot is 36.1 % 

and the settling time is 2.5 s. 

 

Fig. 8. Ziegler-Nichols and additional manual tuning 

Due to the implementation of the microcon-

troller, the PID controller is transformed from a con-

tinuous to a discrete form, and then a differential 

equation is obtained [3]. When converting the PID 

controller, it is important to select the sampling pe-

riod which should be at the least 10 times the system 

bandwidth [12]. The bandwidth of the closed system 

with PID controller is 14.5 rad/s, which means that 
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the sampling period is T0 <0.043 s. A shorter sam-

pling period will adjust the system response faster 

based on the changes that have occurred. Therefore 

10 ms (T0 = 0.01 s) is used for the sampling period. 

The conversion from s-domain to z-domain is per-

formed using the method of backward Euler calcu-

lation, so that for 𝑠 =
𝑧−1

𝑇0𝑧
 we get a controller of the 

form: 

𝐶(𝑧) = 𝐾𝑝 +
𝐾𝑖𝑇0𝑧

𝑧 − 1
+
𝐾𝑑(𝑧 − 1)

𝑇0𝑧
=           

=
3.263𝑧2 − 6.397𝑧 + 3.137

𝑧2 − 𝑧
(28)

 

From Figure 9 can be seen that the obtained 

discrete PID controller gives better results than the 

continuous controller, with an overshoot of 32.7 % 

and a settling time of 1 s. 

Using a shorter sampling period (1 ms) gives 

better results, but reduces the performance of the 

microcontroller needed to perform calculations for 

other processes. 

The discrete PID controller can be presented in 

the form: 

𝐶(𝑧) =
𝑈(𝑧)

𝐸(𝑧)
=
3.263 − 6.397𝑧−1 + 3.137𝑧−2

1 − 𝑧−1
, (29) 

from which is obtained the differential equation: 

𝑢(𝑛) = 𝑢(𝑛 − 1) + 3.263 𝑒(𝑛) − 6.397 𝑒(𝑛 − 1) +

+ 3.137 𝑒(𝑛 − 2)                                   (30)
 

 

Fig. 9. System response with continuous and discrete PID controller 

5. FUZZY LOGIC CONTROL ALGORITHM 

In processes where the dynamics change as a 

result of nonlinearity and interference, conventional 

PID controllers can not cope and system oscillations 

may occur due to precisely adjusted control param-

eters. The fuzzy-logic controller is a good alterna-

tive to the PID controller, as it can handle nonlinear 

systems and can be designed using human operator 

knowledge without knowing the mathematical 

model of the system. Although the fuzzy logic con-

troller usually does not have a better response in the 

time domain than the PID controller, it can still be 

applied to systems that have rapid changes, unlike 

PIDs that will need to adjust the values of the con-

trol parameters [6]. 

Fuzzy logic control is a control algorithm 

based on linguistic control, which derives from the 

expert knowledge applied in an automatic system 

control algorithm [7], [8]. The components of the 

fuzzy logic controller are: fuzzification, rule base, 

inference system and defuzzification (Figure 10). 

• Fuzzification – converts all inputs to a member-

ship function so that there is a degree of 

membership for each linguistic term referring to 

the input variable. 

• Rule base –- is a collection of rules that are usu-

ally in the format "if-Then" and formally the 

side "If" is called premise and the side "Then" is 

called a consequent. The computer is able to ex-

ecute the rules and calculate the control signal 

depending on the inputs. 
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• Defuzzification – is the combination and con-

version into a single output signal that is not 

fuzzy but crisp, which is the control signal of the 

system. The output signal depends on the rules 

of the system [9]. 

• Inference system – assesses which control rules 

should be ignited at a given moment and then 

decides what the control output signal will be. 

The most commonly used are Mamdani and 

Sugeno (Takagi-Sugeno) inference systems. 

• The Mamdani inference system is based on 

Lotfi Zade's 1973 work on fuzzy algorithms for 

complex systems and decision processes that 

expects all output functions to be fuzzy sets. 

This inference system is intuitive, and widely 

accepted, better suited to human input, but the 

main limitation is that the calculation for the  

defuzzification process takes longer. 

• Sugeno inference system is based on the Tak-

agi-Sugeno-Kang fuzzy inference method, in 

their joint effort to formalize a systematic ap-

proach to generating fuzzy rules from a set of 

input-output data, which expects all affiliation 

functions to be singleton. This inference system 

is computer efficient, works well with linear 

techniques (PID control, etc.), works well with 

optimization and adaptation techniques, guaran-

tees output surface continuity, and is more suit-

able for mathematical analysis. The results are 

very similar to the consequents from Mamdani's 

style. 

 

Fig. 10. Fuzzy logic controller 

In this paper, the Mamdani inference system is used 

to design the fuzzy logic controller. The fuzzification of 

the two inputs is performed with 5 triangular and two Г 

(trapezoidal) membership functions for each input re-

spectively, which creates a base of 49 rules. The output 

is formed by five triangular and two Г membership func-

tions. The rule base is presented in Table 3, where N – 

negative, P – positive, B – big, S – small. 

The membership functions are shown in Figure 11, 

where the ranges of the linguistic variables are graph-

ically represented. The range [–2000 2000] is used for the 

error, while for the change of the error [–27 27], taking 

into account that at a maximum speed for 10 ms a maxi-

mum of 27 units can be passed, and the voltage [–23.7 

23.7]. The inference system is based on composition so 

that the fuzzy relations that represent the meaning of each 

individual rule are merged into one fuzzy relation that 

describes the meaning of the whole set of rules. 

The inference is performed through an opera-

tion of the composition of the fuzzy input and the 

fuzzy relation which represents the meaning of the 

whole set of rules. The result is a fuzzy set that de-

scribes the fuzzy value of the total control output [3] 

[10]: 

𝜇𝑢(𝑢) = max
𝑥
min
𝑒,∆𝑒

(𝜇𝑎𝑛𝑡(𝑒, ∆𝑒), 𝜇𝑅(𝑒, ∆𝑒, 𝑢)) (31) 

T a b l e  3 

Rule base 

 Error e(t) 

Control voltage u(t) BN  N SN  Z  SP  P  BP  

Change of error ∆𝑒 

BN BN BN BN BN N SN Z 

N  BN BN BN N SN Z SP 

SN BN BN N SN Z SP P 

Z BN N SN Z SP P BP 

SP N SN Z SP P BP BP 

P SN Z SP P BP BP BP 

BP Z SP P BP BP BP BP 
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Fig. 11. Membership functions 

The centroid method (center of gravity) is used 

for defuzzification. In continuous case the crisp 

value of the control signal is obtained with the fol-

lowing relation: 

𝑢 =
∫𝑢 ∗ 𝜇(𝑢)𝑑𝑢

∫𝜇(𝑢)𝑑𝑢
, (32) 

While in discrete case with the relation: 

𝑢 =
∑ 𝑢𝑖 ∗ 𝜇(𝑢𝑖)
𝑛
𝑖=1

∑ 𝜇(𝑢𝑖)
𝑛
𝑖=1

. (33) 

The resulting fuzzy logic controller with Mamdani 

inference system is used to generate fuzzy logic control-

ler with Sugeno inference system which is more suitable 

for microcontroller implementation. Generation is per-

formed using MATLAB (mam2sugeno or convertTo-

Sugeno) so that the newly obtained Sugeno inference sys-

tem has constants as output membership functions. These 

constants are determined by the centroids of the output 

(consequential) membership functions of the original 

Mamdani mechanism while the input membership func-

tions and the rules remain the same. The weighted-aver-

age method is used for defuzzufication, for product – im-

plication, and for aggregation – sum. From Figure 12 can 

be seen that using the Mamdani inference system the sys-

tem has a overshoot of 9.5%, and oscillates with an am-

plitude ± 0.05 around the reference value, while the os-

cillations decrease over time. This value is acceptable 

considering that the distance between two displacement 

units is 0.0176 mm, which in case of physical realization 

can occur oscillations due to the backlash of the reduction 

itself (gears) of the motor. Using the Sugeno inference 

system there are no oscillations and the response has a 

settling time of 1.1s and a overshoot of 15.9%. 

 
Fig. 12. System response with Mamdani and Sugeno inference systems 

6. ADAPTIVE NEURAL  

FUZZY INFERENCE SYSTEM – ANFIS 

The Adaptive Neural Fuzzy Inference System 

(ANFIS) is a combination of two computational 

methods, neural networks and fuzzy logic. Fuzzy 

logic has the ability to change the qualitative aspects 

of human knowledge and insights in the process of 

precise quantitative analysis. However, there is no 

defined method that can be used as a guide in the 

process of transforming human thought into a fuzzy 

inference system and also takes a long time to adjust 

BN BP
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1

0
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0

0.5

1
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to membership functions. Unlike fuzzy logic, neural 

networks have great capabilities in the process of 

adapting to their environment. Therefore, neural 

networks can be used to automatically adjust the 

membership functions and reduce the error rate in 

determining the rules in fuzzy logic [11]. 

A simple fuzzy inference system has limited 

learning (or adaptation) opportunities. If learning 

skills are required, it is convenient to place a fuzzy 

model within the supervised neural networks that 

can systematically calculate gradient vectors. Suge-

no system is used for consequent and the typical 

fuzzy rule is: 

IF x is A and y is B, then z = f (x, y), 

where A and B are fuzzy sets in the premise part and 

z = f (x, y) is a sharp function in the consequent part. 

Typically, the z function is a first-order (moving sin-

gle) or zero-order (constant single) fuzzy Sugeno 

model. An example of modeling a Sugeno first-or-

der inference system is shown in Figure 13, which 

contains the following two rules: 

Rule 1: IF x is A1 and y is B1 then  f1=p1x+q1y+r1, 

Rule 2: IF x is A2 and y is B2 then  f2=p2x+q2y+r2. 

the functionally equivalent supervised neural net-

work in Figure 13 that follows the general design 

algorithm has one input layer, three hidden layers 

and one output layer, the meaning of which is: 

Layer 1: Each adaptive node in this layer gen-

erates values for the membership of the input vec-

tors Ai, for i = 1, 2. For example, the membership 

function of the i-node can be a generalized bell 

membership function: 

𝑂𝑖
1 = 𝜇𝐴𝑖 =

1

[1 + |
𝑥 − 𝑐𝑖
𝑎𝑖

|
2𝑏𝑖
]

(34)
 

where 𝑂𝑖
𝑗
 denotes the output of the i-node in the j-

layer, x is the input of node i, Ai are the input vectors 

connected to the i-node, and {ai, bi, ci} are the pa-

rameter set that changes the form of the membership 

function. The parameters in this layer are listed as 

the parameters of the premise part. 

Layer 2: Each node in this layer is fixed and 

calculates the ignition power of a particular product 

rule. The output of each node represents the ignition 

power of the rule: 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∙ 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2. (35) 

 

Fig. 13. a) Sugeno fuzzy logic inference system b) ANFIS 
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In fact, any other T-norm operator that per-

forms fuzzy and operation can be used as a node 

function in this layer. 

Layer 3: The fixed node i in this layer calcu-

lates the ratio between the ignition power of the 𝑖 
rule and the sum of the ignition powers of all the 

rules: 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖
𝑤1 +𝑤2

, 𝑖 = 1, 2. (36) 

For simplicity, the outputs of this layer are also 

called normalized firing powers. 

Layer 4: Adaptive node i in this layer calcu-

lates the contribution of i-rule to total output, with 

the following node function: 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖 + 𝑟𝑖), (37) 

where 𝑂𝑖
4is the output of layer 4, and {pi, qi, ri} are 

the parametric set. The parameters in this layer are 

listed as parameters of the consequent part. 

Layer 5: The only fixed node in this layer cal-

culates the total output as the sum of the values of 

each rule: 

𝑂𝑖
5 =∑𝑤𝑖̅̅ ̅𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑓𝑖𝑖
. (38) 

The basic learning rule is a descending back-

propagation gradient, which calculates the error sig-

nals (the change in the square error relative to the 

output of each node) recursively from the output 

layer back to the input nodes. This learning rule is 

exactly the same as the reverse propagation learning 

rule used in feedforward neural networks. The total 

output f can be expressed as a linear combination of 

the following parameters: 

𝑓 = 𝑤1̅̅̅̅ 𝑓1 +𝑤2̅̅̅̅ 𝑓2 = (𝑤1̅̅̅̅ 𝑥)𝑝1 + (𝑤1̅̅̅̅ 𝑦)𝑞1 +              

     +  (𝑤1̅̅̅̅ )𝑟1 + (𝑤2̅̅̅̅ 𝑥)𝑝2 + (𝑤2̅̅̅̅ 𝑥)𝑞2 + (𝑤𝑤̅̅ ̅̅ )𝑟2 (39) 

Based on Equation (27), the hybrid learning al-

gorithm combines descending gradient methods and 

the least squares for optimal parameter search. 

The steps used to obtain ANFIS are: 

Draw the Simulink model with the fuzzy logic 

controller and simulate it with the given rule base. 

The first step in designing ANFIS is to collect 

training and testing data while simulating the fuzzy 

logic controller. 

The two inputs, i.e. e(t) and ∆e and the output 

signal u(t) provide the data for training and testing. 

Use the anfisedit command in MATLAB to 

create the ANFIS .fis file or use the genfis1 and an-

fis commands. 

The training data collected in step 2 is loaded 

and a inference mechanism is generated with se-

lected membership functions (in this case triangu-

lar). 

The collected data are trained with the gener-

ated inference system up to a certain number of 

epochs (iterations) and then tested [7]. 

In this paper, an ANFIS controller is designed 

based on the data obtained from the error signals, 

the error change and the control signal from a mod-

ified Sugeno inference system (the error change sig-

nal is multiplied by a coefficient of 1.5) from the 

previous section. Data were collected with a sam-

pling time of 0.01s over a period of 5 s and divided 

into 80% for training and 20% for testing. 7 triangu-

lar membership functions are selected for both in-

puts, a hybrid learning algorithm and 100 epochs. 

Trial and error have shown that the best results for 

ANFIS are obtained by collecting data with excite-

ment greater than about 25% of the single. By using 

a single step excitation the obtained ANFIS destabi-

lizes the system with small changes in the data (er-

rors). System response with Sugeno, modified 

Sugeno and ANFIS inference systems is given on 

Figure 14. 

The data obtained from the system response 

simulations with the applied controllers on the DC 

motor are numerically presented in Table 4. It can 

be noticed that the least settling time and the least 

overshoot has the ANFIS fuzzy logic controller. In 

terms of speed and rise time, the discrete PID con-

troller has the best results. This conclusions are also 

evident in Figure 15. 

T a b l e  4 

Results of the applied controllers 

 Rise 

time [s] 

Settling 

time [s] 

Overshoot 

[%] 

Continuous PID + ZN 0.2 4.5 74.2 

Continuous PID + ZN + 

manual tuning 0.3 2.5 36.1 

Discrete PID 0.1 1.1 32.7 

Fuzzy logic with 

Mamdani 0.1 5 9.5 

Fuzzy logic with Sugeno 0.2 1.1 15.9 

Fuzzy logic with modi-

fied Sugeno 0.3 0.8 0 

Fuzzy logic with ANFIS 0.4 0.7 0 
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Fig. 14. System response with Sugeno, modified Sugeno and ANFIS inference systems 

 

Fig. 15. System response with different type of controllers 

7. CONCLUSION 

This paper presented the design of a various 

control algorithms for the control of actuator as part 

of a heliostat. Real system was used for identifica-

tion of the data and obtaining mathematical model. 

Furthermore, the mathematical model was used for 

design and simulation of continuous PID controller 

from which was obtained discrete PID controller. In 

addition to the PID, fuzzy logic controller was de-

signed both with Mamdani and Sugeno inference 

systems. Fuzzy logic controller with Sugeno infer-

ence system was used for generating data for the 

ANFIS. Finally, the results from all controllers were 

summarized and analyzed. It can be concluded that 

with the application of modified fuzzy logic control-

ler and ANFIS, satisfactory results have been 

achieved with minimal rise and settling time, with-

out overshoot and steady state error. 
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