

Journal of Electrical Engineering and Information Technologies, Vol. 7, No. 2, pp. 77–85 (2022)

Article 198 In print: ISSN 2545–4250

Received: Octomber 29, 2022 On line: ISSN 2545–4269

Accepted: November 15, 2022 UDC: 004.62.057.8-049.7

DOI: https://doi.org/10.51466/JEEIT2272198077t

Original scientific paper

BIGQUERY FOR BIG DATA ANALYSIS

Žaneta Trenčeva, Aleksandar Risteski, Toni Janevski, Borislav Popovski

Faculty of Electrical Engineering and Information Technologies,

“Ss. Cyril and Methodius” University in Skopje,

Rugjer Bošković bb, P.O. Box 574, 1001 Skopje, Republic of North Macedonia
zanetatrenceva1@yahoo.com

A b s t r a c t: In todays digital era, enormous amounts of data from various sources are generated daily. This

data, also known as big data, is too complex to be managed using traditional data management systems. As a result,

many technologies capable of handling big and complex data have emerged in the industry. One of them is Google

Cloud’s BigQuery. Designed to overcome the problem of traditional databases, the BigQuery platform offers storage

and analysis of big data, while providing high scalability and reliability. We will be using BigQuery to gain insights

into the content ratings of an OTT (Over-The-Top) TV platform.

Key words;; analysis; content; data; query; storage

BIGQUERY ЗА АНАЛИЗА НА ГОЛЕМИ ПОДАТОЦИ

А п с т р а к т: Во денешната дигитална ера огромни количества податоци од најразлични извори се

генерираат на дневно ниво. Овие податоци, познати и како „големи податоци“, се премногу комплексни за да

бидат менаџирани користејќи традиционални системи за управување со податоци. Како резултат, во индустри-

јата се појавија многу технологии способни да се справат со обемни и комплексни податоци. Една од нив е

BigQuery на Google Cloud. Дизајнирана да го надмине проблемот на традиционалните бази на податоци, плат-

формата BigQuery нуди складирање и анализа на големи податоци, притоа обезбедувајќи висока скалабилност

и доверливост. Ние ќе го користиме BigQuery за да добиеме увид во гледаноста на содржините на една ОТТ

(Оver-The-Top) телевизиска платформа.

Клучни зборови: анализа; содржина; податоци; барање; складирање

1. INTRODUCTION

In the past, solutions for big data management

were not simple or cheap. Not only did businesses

need to make a huge upfront investment in hardware

and software, they also had to bring experts in data

analytics into their staff too. Today, the huge

amount of data in any business has forced compa-

nies to look for new, innovative solutions to this

problem. One of them is Google’s BigQuery, a fully

managed, cloud-based serverless data warehouse.

Essentially, the system works by supporting analyt-

ics strategies in a huge-scale data environment.

BigQuery is a fully managed enterprise data

warehouse designed to help organizations manage

and analyze their data with built-in features like ma-

chine learning, geospatial analysis, and business in-

telligence. BigQuery's serverless architecture lets its

users use SQL queries to answer their organization's

biggest questions with no infrastructure manage-

ment. Its scalable, distributed analysis engine can

provide querying terabytes in seconds and petabytes

in minutes.

Big Query interfaces include Google Cloud

console interface and the BigQuery command-line

tool. Developers and data scientists can use client

libraries with familiar programming including Py-

thon, Java, JavaScript, and Go, as well as BigQue-

ry's REST API and RPC API to transform and

manage data.

This paper is organized in the following man-

ner. Section 2 provides an overview of prior related

work on this topic. Section 3 describes the princi-

ples of operation of BigQuery, namely the technol-

ogies and algorithams it uses to handle Big Data.

The topic of section 4 are the BigQuery concepts,

that is, how the data stored in BigQuery is struc-

tured, what operations can be run on it, what data

https://doi.o/

78 Ž. Trenčeva, A. Risteski, T. Janevski, B. Popovski

J. Electr. Eng. Inf. Technol. 7 (2) 77–85 (2022)

types are supported and so on. These concepts are

explained by making comparisons with traditional

relational databases, such as MySQL, due to the

similarities between the two types of systems. Sec-

tion 5 is a demonstration of a practical usage of

BigQuery, using simulated data from an OTT

(Over-The-Top) TV application, resulting in in-

sights into the ratings of its content. In section 6, the

usage of the PHP Client library for the BigQuery

API is presented, to demonstrate how data stored in

BigQuery can be accessed from a PHP web applica-

tion. Section 7 concludes this paper.

2. RELATED WORK

There are many research papers regarding

BigQuery for big data manipulation. In [1], a simple

approach of using BigQuery for storing and ana-

lyzing data is illustrated. In the study, data samples

in CSV format are taken from a publicly available

pool and imported into BigQuery. Then, this data is

queried from the GCP (Google Cloud Platform)

console, where the results are shown as well.

Reference [2] presents a method of managing and

handling non-relational data in BigQuery and

calculating the execution time of queries. This paper

only covers the analysis time with the dataset’s size

using Google SDK (Software Development Kit)

rather than extracting the taken dataset’s necessary

values. Reference [3] validates the use of big data

and cloud technologies in education related analy-

tical applications, which are also called educational

intelligence applications. It presents a prototype,

which is a modified version of an open-source tool

called BigQuery Visualizer. The prototype is a web

application that is used to make queries to a Big-

Query dataset and create plots and graphs for ana-

lytical applications. Reference [4] details the func-

tionality of edx2bigquery – an open source Python

package developed by Harvard and MIT to ingest

and report on hundreds of course datasets from edX

(an online course provider created by Harvard and

MIT), making use of BigQuery to handle multiple

terabytes of learner data. The authors find that

BigQuery provides ease of use in loading the multi-

faceted MOOC (Massive Open Online Course)

datasets and near real-time interactive querying of

data, including large clickstream datasets. More-

over, flexible research and reporting dashboards are

provided by visualizing and aggregating data, using

services associated with BigQuery. In [5] the

authors present and evaluate a novel and efficient

RDF (Resource Description Framework) dictionary

compression algorithm, where BigQuery is used to

store and query the compressed data. The proposed

algorithm is faster, generates small dictionaries that

can fit in memory and results in better compression

rate when compared with other large scale RDF

dictionary compression algorithms. Consequently,

it reduces the BigQuery storage and query costs.

Reference [6] offers an overview of Explainable AI

in BigQuery ML, using as an example a (fictional)

realtor's linear regression model that predicted a

home's latest sale price based on predictor variables

such as the total tax assessment from the year of the

last sale, the square footage of the house, the

number of bedrooms, the number of bathrooms, and

whether the condition of the home is below average.

After training the linear model, the feature attributi-

on can be studied from a global and local perspec-

tive in BigQuery.

3. PRINCIPLES OF OPERATION

BigQuery can handle a sheer amount of data

while looking mostly like any other SQL database

(like MySQL). How can BigQuery do what MySQL

cannot? We will start by looking at the problem’s

two parts. First, if we need to filter billions of rows

of data, we need to do billions of comparisons,

which require a lot of computing power. Second, we

need to do the comparisons on data that is stored

somewhere, and the drives that store that data have

limits on how quickly it can flow out of them to the

computer that is doing those comparisons. Those

two problems are the fundamental issues that need

to be solved, so we will look at how BigQuery tries

to address each of them [7].

a) Scaling computing capacity

People originally tackled the computation as-

pect of this problem by using the MapReduce algo-

rithm, where data is chopped into manageable pie-

ces and then reduced to a summary of the pieces.

This speeds up the entire process by parallelizing

the work to lots of different computers, each work-

ing on some subset of the problem. For example, if

we had a few billion rows and wanted to count them,

the traditional way to do this would be to run a script

on a computer that iterates through all the rows and

keeps a counter of the total number of rows, which

would take a long time. Using MapReduce, we

could speed this up by using 1,000 computers, with

each one responsible for counting one one-thou-

sandth of the rows, and then summing up the 1,000

separate counts to get the full count (Figure 1).

In short, this is what BigQuery does under the

hood. Google Cloud Platform has thousands of

CPUs in a pool dedicated to handling requests from

BigQuery. When we execute a query, it momen-

tarily gives us access to that computing capacity,

with each unit of computing power handling a small

 BigQuery for big data analysis 79

Спис. Електротехн. Инф. Технол. 7 (2) 77–85 (2022)

piece of the data. Once all the little pieces of work

are done, BigQuery joins them all back together and

gives us a query result.

Fig. 1. Counting a few billion rows by breaking

them into chunks

b) Scaling storage throughput

When we solved the computational capacity

problem by splitting the problem up into many

chunks and using lots of CPUs to crunch on each

piece in parallel, we never thought about how we

would make sure all of the CPUs had access to the

chunks of data. If these thousands of CPUs all re-

quested the data from a single hard drive, the drive

would get overwhelmed in no time. The problem is

compounded by the fact that the total amount of data

you need to query is potentially enormous.

To make this more concrete, most drives, re-

gardless of capacity, typically can sustain hundreds

of megabytes per second of throughput. At that rate,

pulling all the data off of one 10-terabyte (TB) drive

(assuming a 500 MB/s sustained transfer rate)

would take about five hours. If 1,000 CPUs all

asked for their chunk of data (1,000 chunks of 10

GB each), it would take about five hours to deliver

them, with a best case of about 20 seconds per 10

GB chunk. The single disk acts as a bottleneck be-

cause it has a limited data transfer rate.

To fix this, the database could be splitted

across lots of different physical drives (called “shar-

ding”) (Figure 2) so that when all of the CPUs

started asking for their chunks of data, lots of differ-

ent drives would handle transferring them. No drive

alone would be able to ship all the bytes to the

CPUs, but the pool of many drives could ship all

that data quickly. For example, if we were to take

those same 10 TB and split them across 10,000 sep-

arate drives, 1 GB would be stored on each drive.

Looking at the fleet of all the drives, the total thro-

ughput available would be around 5 TB/s. Also,

each drive could ship the 1 GB it was responsible

for in around two seconds. Regarding the example

with 1,000 separate CPUs each reading their 10 GB

chunk (one one-thousandth of the 10 TB), they

would get the 10 GB in two seconds-each one would

read ten 1 GB chunks, with each chunk coming from

one of 10 different drives.

Fig. 2. Sharding data across multiple disks

Under the hood, Google is doing this, using a

custom-built storage system called Colossus, which

handles splitting and replicating all of the data.

4. CONCEPTS

As already mentioned, BigQuery is very SQL-

like, so close comparisons can be drawn with things

the reader is most probably familiar with in systems

like MySQL [7].

a) Datasets and tables

Like a relational database has databases that

contain tables, BigQuery has datasets that contain

tables (Figure 3). The datasets mainly act as con-

tainers, and the tables, again like a relational data-

base, are collections of rows. Unlike a relational da-

tabase, the user does not necessarily control the de-

tails of the underlying storage systems, so although

datasets act as collections of tables, one has less

control over the technical aspects of those tables

than they would with a system like MySQL or Post-

greSQL.

Fig. 3. A BigQuery dataset and tables compared to a MySQL

database and tables

80 Ž. Trenčeva, A. Risteski, T. Janevski, B. Popovski

J. Electr. Eng. Inf. Technol. 7 (2) 77–85 (2022)

Each table contained in the dataset is defined

by a set schema, so BigQuery can be thought of in a

traditional grid, where each row has cells that fit the

types and limits of the columns defined in the

schema. It gets a little more complicated than that

when a particular column allows nested or repeated

values, but we will explore that in more detail later

in this paper.

Unlike in a traditional relational database,

BigQuery rows typically do not have a unique iden-

tifier column, primarily because BigQuery is not

meant for transactional queries where a unique ID is

required to address a single row. Because BigQuery

is intended to be used as an analytical storage and

querying system, constraints like uniqueness in

even a single column are not available. Otherwise,

BigQuery will accept most common SQL-style re-

quests, like SELECT statements, UPDATE, INS-

ERT, and DELETE statements with potentially

complex WHERE clauses, as well as JOIN opera-

tions.

b) Schemas

 As with other SQL databases, BigQuery ta-

bles have a structured schema, which in turn has the

standard data types, such as INTEGER, TIMES-

TAMP, and STRING (sometimes known as

VARCHAR). Additionally, fields can be required

or nullable (like NULL or NOT NULL). Unlike

with a relational database, we define and set sche-

mas as part of an API call rather than running them

as a query.

For example, we might have a table of people

with fields for each person’s name, age, and birth

date, but instead of running a query that looks like

CREATE TABLE, we would make an API call to

the BigQuery service, passing along the schema as

part of that message. We can represent the schema

itself as a list of JSON objects, each with infor-

mation about a single field. In the following exam-

ple listing, the NULLABLE and REQUIRED

(SQL’s NOT NULL) are listed as the mode of the

field.

There is an additional mode called REPEATED,

which is currently not common in most relational

databases. Repeated fields do as their name implies,

taking the type provided and turning it into an array

equivalent. A repeated INTEGER field acts like an

array of integers. BigQuery comes with special

ways of decomposing these repeated fields, such as

allowing us to count the number of items in a

repeated field or filtering as long as a single entry of

the field matches a given value.

Next, a field type called RECORD acts like a

JSON object, allowing us to nest rows within rows.

For example, the people table could have a

RECORD type field called favorite_book, which in

turn would have fields for the title and author

(which would both be STRING types). Using

RECORD types like this is not a common pattern in

standard SQL, where it would be normalized into a

separate table (a table of books, and the favorite_

book field would be a foreign key). In BigQuery,

this type of inlining or denormalizing is supported

and can be useful, particularly if the data (in this

case, the book title and author) is never needed in a

different context – it is only ever looked at alongside

the people who have the book as a favorite.

5. THE TV PROJECT ON GCP CONSOLE

For our practical demonstration of BigQuery,

we will be using simulated data from an OTT TV

platform, an interactive TV service that allows users

to watch live TV, VOD (Video On Demand), record

programs and more. The TV application, which is

an Android application, is integrated with Firebase,

and it uses the Google Analytics for Firebase SDK.

Google Analytics is an application measurement so-

lution, that provides insight on application usage

and user engagement. The SDK automatically cap-

tures a number of events and user properties, but

also allows users to define their own custom events

to measure the things that uniquely matter to their

business. Automatically collected events are trig-

gered by basic interactions with the application, and

no additional code should be written to collect them.

Some automatically collected events include:

“first_open” (the first time a user launches an appli-

cation after installing or re-installing it), “user_en-

gagement” (when the application is in the fore-

ground for at least one second), “dynamic_link_ap-

p_open” (when a user re-opens the application via a

dynamic link), etc.

To the contrary, custom events are defined by

the developer of the application, by explicitly writ-

ing code in the desired places in the program, that

will include the custom event name and (optionally)

custom event parameters. In our practical example,

we will be working with custom events.

When users watch content on our OTT TV

platform, they generate a large amount of different

events. In the application, there is code that

“catches” these user interaction events that can be,

for example, changing a channel, scheduling a re-

cording of a program, interacting with a menu, paus-

ing or rewinding a live channel, etc. All this data,

 BigQuery for big data analysis 81

Спис. Електротехн. Инф. Технол. 7 (2) 77–85 (2022)

that in fact represents user behaviour, is available in

Google Analytics, and since the Firebase project is

linked to BigQuery, it is also stored in a dedicated

project in BigQuery.

We can open our BigQuery project in the GCP

console. The console provides a graphical interface

used to create and manage BigQuery resources and

run SQL queries.

Figure 4 is a screenshot of the “SQL work-

space” section of the BigQuery page of our project

in the console. It consists of an Explorer pane and a

Details pane.

Fig. 4. The BigQuery dashboard of the TV project

The Explorer pane lists current Cloud projects

and any pinned projects. Datasets can be accessed

by expanding the project, and tables, views and

functions can be accessed by expanding the dataset.

The Details pane shows information about the

BigQuery resources. When we select a dataset, ta-

ble, view, or other resource in the Explorer pane, a

new tab is displayed. On these tabs, we can view

information about the resource, create tables and

views, modify table schemas, execute SQL queries,

export data, and perform other actions.

For each Firebase project that is linked to Big-

Query, a single dataset named "analytics_<proper-

ty_id>" is added to the BigQuery project. Property

ID refers to the Analytics Property ID, which can be

found in App Analytics Settings in the Firebase

project.

Regarding dataset structure, within each data-

set, a table named “events_YYYYMMDD” is created

each day whether the Daily export or Streaming

export option is enabled (during the Firebase in-

tegration process). Moreover, if the Streaming

export option is enabled, an additional table,

“events_intraday_YYYYMMDD”, is created. This

table is populated continuously as events are re-

corded throughout the day. It is deleted at the end of

each day once “events_YYYYMMDD” is com-

plete.

82 Ž. Trenčeva, A. Risteski, T. Janevski, B. Popovski

J. Electr. Eng. Inf. Technol. 7 (2) 77–85 (2022)

That being said, we can now explore our pro-

ject. The project contains two datasets, “analyt-

ics_181163363” and “firebase_crashlytics”, as well

as several saved queries.

We are interested in the “analytics_181163363”

dataset. It contains 60 tables named “events_YY-

YYMMDD”, which store events that happened on

the specific date in the past 60 days. There is also

the “events_intraday_YYYYMMDD” table, which

stores events happening on the current day, as we

previously explained. Figure 4 also shows a part of

these tables’ schema, that is, the fields (table

columns), their types and their modes. For example,

the field “event_name” is of type STRING and it is

NULLABLE. The field “event_params”, on the

other hand, is of type RECORD, and it is in

REPEATED mode. That means that it acts as an ar-

ray of struct types, that is, there can be many entries

within this field, and each of them will have both

“key” and “value”.

By examining the table’s fields, we can con-

clude that these tables store various information,

such as information about the triggering event, the

user, the user device, the application, geo location

etc. The schema of these tables, that is, the fields, is

defined by Google Analytics, and not by the user.

The user can, however, specify event parameters for

their custom events.

Next to the Schema tab (that we have been ex-

amining so far) in the Explorer pane, is the Details

tab, which gives some basic table information, such

as its size, number of rows, expiration date etc. It is

shown on Figure 5. The last tab is the Preview tab,

where actual table entries are shown, sorted in de-

scending order. Two entries with only the first sev-

eral fields can be seen on Figure 6.

Fig. 5. Details tab of the Explorer pane

Fig. 6. Preview tab of the Explorer pane

 BigQuery for big data analysis 83

Спис. Електротехн. Инф. Технол. 7 (2) 77–85 (2022)

We will now demonstrate query execution in

the console with two examples. In both of them we

are working with custom events whose “event_na-

me” parameter is “Playback_Completed”, as those

are the events that hold data about user sessions (and

therefore, content ratings).

The first query and part of its results are shown

on Figure 7. The query uses the events table from

29.10.2022, and filters records whose “event_na-

me” field is “Playback_Completed”. It then groups

these records by user ID, counts them, and displays

the results in descending order of the number of

records.

Figure 8 shows another example of a SQL

query in the console and part of its results upon ex-

ecution.

In the SQL query, it can be noted that an

UNNEST operator is being used. The UNNEST op-

erator is used to convert an array into set of rows,

also known as “flattening”. It takes an array and re-

turns a table with a single row for each element in

it. Basically, we are unnesting the “event_params”

field (which is an array, as its mode is REPEATED)

by key (“content_name”, “duration_seconds”,

“content_type” and “username”).

What the query does is, it fetches results in the

form of content ratings cumulatively, namely how

much time a certain content was watched, and how

many sessions of it occurred. It does this the follow-

ing way: it uses the “Playback_Completed” events

(that is, user sessions), filtered by a starting date and

an ending date, the type of content watched (in this

case, live channel, but can also be timeshift, VOD

and radio) and grouped by the content name. Then

it sums the “duration_seconds” parameter of each

session to calculate the overall ratings in seconds

(hours) of the given content, and counts the “con-

tent_name” parameter (or any other from the

“event_params” field) to determine the number of

times the given content was watched. Finally, the

data is ordered in descending order by the overall

time a content was watched.

Fig. 7. Query execution and results: Number of sessions by user ID

84 Ž. Trenčeva, A. Risteski, T. Janevski, B. Popovski

J. Electr. Eng. Inf. Technol. 7 (2) 77–85 (2022)

Fig. 8. Query execution and results: Watch time and number of sessions of live channels

As we can see, “Sitel” is the most watched live

TV channel, with approximately 144 137 hours of

watch time and 133 835 user sessions. We can vis-

ualize these results using Google Data Studio, an

online tool for converting data into customizable in-

formative reports and dashboards. We can do that

by clicking the export data button and then choosing

Data Studio. Figure 9 shows (a part of) the query

results presented in a bar chart.

Fig. 9. Bar chart of query results in Data Studio

6. THE PHP CLIENT LIBRARY FOR

THE BIGQUERY API

Google Cloud APIs are programmatic inter-

faces to Google Cloud Platform services, that allow

users to easily add different functionalities to their

applications.

Client libraries make it easier to access Google

Cloud APIs from a supported language. While

Google Cloud APIs can be used directly by making

raw requests to the server, client libraries provide

simplifications that significantly reduce the amount

of code that needs to be written.

We will now take a look at how to use the PHP

Client library for the BigQuery API, that is, how to

access data stored in a BigQuery project from a PHP

web application.

Assuming we have a PHP web application, we

first need to install the client library in it. In PHP,

this is done by running “composer require google/

cloud-bigquery”. In order to do that, we must first

set up authentication. One way to set up authentic-

cation is to create a service account in the TV

 BigQuery for big data analysis 85

Спис. Електротехн. Инф. Технол. 7 (2) 77–85 (2022)

project in the cloud console and then generate a

service account key and download it locally. Fi-

nally, we need to make a connection to the TV pro-

ject, using the generated key. The code for this pur-

pose is the following, where the JSON file is the

downloaded key:

<?php

require 'vendor/autoload.php';

use Google\Cloud\BigQuery\BigQueryClient;

$projectId = ‘<project-name>’;

$path = '<project-name>-d0425aeab4c1.json';

$bigQuery = new BigQueryClient([

'projectId' => $projectId,

'keyFilePath' => $path,

]);

?>

The “bigQuery” variable holds the connection

to the project in BigQuery and will be used to exe-

cute the SQL queries.

If we have a SQL query like the one we saw

earlier in this paper, and assign it to a STRING var-

iable called “query”, we can then execute the query

programmatically, using the following code:

$queryJobConfig = $bigQuery->query($query);

$queryResults = $bigQuery -> runQuery($query

JobConfig);

If the query has run successfully, we have the

results in the “queryResults” variable. Finally, we

are extracting the “content”, “hours” and “no_ses-

sions” fields of the resulting rows and simply echo-

ing them to the web page. The code for this purpose

is the following:

if ($queryResults->isComplete()) {

 $rows = $queryResults->rows();

 $results = array();

 foreach ($rows as $row) {

 echo $row['content'] . ‘ ‘ . $row['hours'] .

‘ ‘ . $row['no_sessions']);

 } else {

 throw new Exception('The query failed to

complete');

}

7. CONCLUSION

Google BigQuery is a service designed to pro-

vide its customers with insight into their businesses

quickly and cost-effectively. With a company's data

system located on the cloud, comes the freedom and

flexibility to modernize its entire business structure.

Some of the most significant advantages offered by

BigQuery are:

 – Accelerated time to value: Users can gain

insight into their businesses as soon as they start us-

ing the service (no prior planning and implementa-

tion costs).

– Simplicity and scalability: All analytical re-

quirements can be performed through a simple and

effective interface, without additional management

infrastructure. The system can scale depending on

demand for performance, size and pricing.

– Speed: With BigQuery, data is processed at

a tremendous speed thanks to the technologies it

uses.

– Security: All projects are encrypted and pro-

tected with IAM (Identity and Access aManage-

ment) support.

– Reliability: Google Cloud and BigQuery en-

able access to always-on servers, and geographic

replication across a huge selection of Google data

centers around the world.

Throughout this paper, we saw the benefits of

BigQuery in action. The example solution we pre-

sented for storage and analysis of OTT TV platform

data can prove very useful for business analysts of

the platform, as it provides information on which

specific content has the most watch time and which

has the least.

REFERENCES

 [1] Ali, H., Hosain, S., Hossain, A. (2021): Big Data analysis

using BigQuery on cloud computing platform, Australian

Journal of Engineering and Innovative Technology, 3 (1),

pp. 1–9.

 [2] Kotecha, B., Joshiyara, H. (2018): Handling non-relational

databases on Big Query with scheduling approach and

performance analysis”, 2018 Fourth International Confe-

rence on Computing Communication Control and Automa-

tion (ICCUBEA), pp. 118–127.

 [3] Khan, S., Alam, M. (2018): Analyzing Big ‘Education’

Data using BigQuery and R, 8th DBT-BIF National

Workshop on Translational Bioinformatics: Bench-to-

Bedside, Department of Computer Science, April 9–10;

 [4] Lopez, G., Seaton, D., Ang, A., Tingley, D., Chuang, I.

(2017): Google BigQuery for education: Framework for

parsing and analyzing edX MOOC data, Proceedings of

the Fourth (2017) ACM Conference on Learning @ Scale,

pp. 181–184.

 [5] Dawelbeit, O., Mccrindle, R. (2016): Efficient dictionary

compression for processing RDF Big Data using Google

BigQuery, 2016 IEEE Global Communications Confer-

ence. 10.1109/GLOCOM.2016.7841775.

 [6] Lichtendahl, K. C., Boatright, B. (2022): Google Cloud

Platform: BigQuery Explainable AI, Darden Case No.

UVA-QA-0943.

 [7] Geewax, J. J. (2018): Google Cloud Platform in Action,

Manning Publications, USA.

