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A b s t r a c t: An innovated model of the switched fuzzy systems whose subsystems are fuzzy systems is presented. 

State feedback H control for this class of fuzzy systems is studied using theory of switching systems and control by 

employing single Lyapunov function technique. A switching strategy of the switched fuzzy system with continuous-

time control input and a relevant switching law is developed. The main condition for asymptotic stability of the 

equilibrium state is given in form of convex combinations of linear matrix inequalities, which are solvable by LMI 

Toolbox and Matlab-Simulink platform. Application to a room regulated air-conditioning plant and the respective 

simulation results are presented to demonstrate the effectiveness and feasible operating performance of the hybrid 

control design. 
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СОСТОЈБЕНО Н∞ УПРАВУВАЊЕ ПО ПОВРАТНА ВРСКА ЗА КЛАСА  

НА ПРЕВКЛУЧУВАЧКИ ФАЗИ-СИСТЕМИ 

А п с т р а к т: Трудот презентира иновиран модел на превклучувачки фази-системи чии потсистеми се исто 

така фази-системи. Проучувано е состојбено Н∞ управување по повратна врска за оваа класа на системи со 

користење на теоријата на превклучувачки системи и на техниката на единична функција на Лјапунов. Раз-

виени се превклучувачка стратегија за превклучувачкиот фази-систем со континуиран управувачки влез и со-

одветен закон за превклучување. Главниот услов за асимптотска стабилност на рамнотежната состојба е да-

ден во облик на конвексни комбинации на линеарни матрични неравенства кои се решаваат со LMI Toolbox 

во платформата Matlab-Simulink. Презентирана е апликација на ваквиот пристап при управување на процес за 

кондиционирање на воздух во затворена просторија, како и соодветни симулациски резултати. Со тоа се де-

монстрираат остварливоста и ефикасноста на изложениот хибриден дизајн на управување. 

Клучни зборови: превклучувачко управување; фази логичко управување; превклучувачки фази-системи; 

состојбено H∞ управување по повратна врска 

1. INTRODUCTION  

In recent years, considerable attention has 

been paid to analysis and synthesis of switched 

systems [1–4]. Switched systems represent one im-

portant class of hybrid systems [5, 22, 23]. A 

switched system consists of a number of sub-sys-

tems, either continuous- or discrete-time dynamic 

systems, along with a relevant switching law that 

orchestrates the switching between its sub-systems. 

https://doi.o/
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Important applications such as in computer disc 

drives [5], some robot control [6], cart-pendulum 

systems [7], and recent aero-space developments 

emphasized switched systems have extensive engi-

neering background in practice in particular [18, 

19]. Their theoretical significance and practical 

value paved a flourishing trend to study switched 

systems. 

On the other hand, fuzzy logical control [8, 
24, 25] has emerged as one of the most active and 
fruitful areas. In the recent past, certain rather use-
ful techniques for stability analysis and synthesis 
have emerged due to the methodology of Linear 
Matrix Inequalities (LMI), its scientific back-
ground and its computing technology. The LMI-
based designs for Takagi-Sugeno (T-S) fuzzy sys-
tems have sparked a trend toward the fuzzy control 
theory and design techniques [8, 20–22]. The LMI 

techniques are employed to solve an H control 
problem of a nonlinear control system via robust 

H fuzzy control [9]. A thorough study of stability 
analysis and synthesis of nonlinear time-delay sys-
tems via linear T-S fuzzy models by state feedback, 
includeng stabilization of uncertain fuzzy systems, 
has been explored in [10, 11] by using the LMI 

techniques. In particular, the H control problem 
for uncertain discrete-time fuzzy systems by state 
feedback has been considered in [11]. In [12], the 

mixed H2/H fuzzy feedback control problems us-
ing LMIs have been considered [17, 19, 25, 26], 
which are further developed and extended in recent 
studies [27, 28, 30]. 

A switched system is called a switched fuzzy 

system if all subsystems are fuzzy systems. This 

class of systems can often more precisely describe 

continuous dynamics and discrete dynamics as 

well as their interactions in actual systems. Com-

pared with the results on stability of switched sys-

tems and those of fuzzy control systems, the results 

on switched fuzzy systems are very few. In [13], 

the combination of hybrid systems and fuzzy mul-

tiple model systems is described, and a fuzzy 

switched hybrid controller is put forward. In [14, 

15], a switching fuzzy model is studied and stabil-

ity conditions are given as well as [16–18] give 

some extension based on [14, 15]. Such a switch-

ing fuzzy system model has two levels of structure, 

which the first level is region rule level and the 

second level is a local fuzzy rule level. This model 

is switching in local fuzzy rule level of the second 

level according to the premise variable in region 

rule level of the first level, which promise wide 

applications [29, 32, 33]. 

An innovated model for a class of switched 

fuzzy systems and its fuzzy-logic based control is 

proposed in this paper, which differs from existing 

ones. It represents essentially a switched system 

whose sub-systems all are fuzzy systems. The res-

pective synthesis design methods do inherit some 

features of hybrid systems, but involves infor-

mation flow of fuzzy systems. The state feedback 

H robust control is investigated exploiting the 

idea that control infrastructure too should be de-

rived employing a similar fuzzy-rule model to that 

of the plant system. In contrast to many existing 

results, in here studied switched fuzzy system con-

trol is rather relying on the intuitive T-S fuzzy-rule 

models.  

This approach provides a kind of different 

premise variable switching directly, while works in 

aforementioned [14–18] considered a model with 

two-level structure. Synthesis design of both con-

tinuous-time controllers for subsystems and swit-

ching law has been developed. Furthermore, based 

on single Lyapunov function technique, a suffici-

ent condition for the switched fuzzy systems to be 

asymptotically stable with H-norm bound is deri-

ved. Finally, by using Matlable’s Fuzzy Toolbox, 

LMI Toolbox and Simulink, the obtained simulati-

on results for the application to for room air-con-

ditioning plant, on its regulating system, demon-

strate the effectiveness and feasible performance of 

this novel control design synthesis. References 

follow thereafter.  

2. SYSTEM MODEL AND PRELIMINARIES 

Consider the continuous-time uncertain swit-

ched fuzzy model of Takagi-Sugeno class. In this 

class of T-S switched fuzzy systems every 

subsystem systems is an uncertain fuzzy system as 

follows: 

( ) 1 ( )1 ( )

( ) 1 ( ) ( ) 2 ( ) ( )

( ) ( ) ( )

: if    is  and    is  ,   then

( ) ( ) ( ) ( ),   

( ) ( ) ( ),      1,2, .

l l l

t t p t p

t l t l t t l t

t l t l t

R M M

x t A x t B w t B u t

z t C x t D u t l N

  

    

  

 

= + +

= + =

 (1) 

Quantities in (1) denote: p ,,, 21   are 

the fuzzy-set premise variables; 

 },,2,1{:)( mMRt =→+   

is a piecewise constant function, called a switching 

sequence signal;
l
p

l MM  ,,1   denote fuzzy sets 
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in the  -th switched subsystem; 
l

tR )(  denotes the 

l -th fuzzy inference rule in the  -th switched 

subsystem; )(tN  is the number of inference rules 

in the  -th switched subsystem such that fuzzy 

rules are selected in every switched subsystem; 

)()( tu t  is the control input of the  -th switched 

subsystem; )(tx  is the system state variable vec-

tor, )(tz  is the output to be controlled, while 

)()( tw t  is disturbance input of the  -th switched 

subsystem; matrices ltA )( , ltB )(1 , ltB )(2  and 

ltC )( , ltD )( are known constant matrices of ap-

propriate dimensions of the  -th switched subsys-

tem.  

It should be noted further that the i -th 

switched subsystem appears in the form: 

1 1

1 2

: if    is  and    is  ,   then

( ) ( ) ( ) ( ),

( ) ( ) ( ),

   1, 2, , 1,2, , .

l l l

i i p ip

il il i il i

il il

i

R M M

x t A x t B w t B u t

z t C x t D u t

l N i m

 

= + +

= +

= =

 (2) 

Then global or overall model of the i -th 

switched subsystem via Zadeh’s fuzzy-logic infer-

ence [24–25] is described by:  

 

 

1 2

1

1

( ) ( ( )) ( ) ( ) ( ) ,

( ) ( ( )) ( ) ( ) ,

     1, 2, , ,

i

i

N

il il il i il i

l

N

il il il i

l

x t t A x t B w t B u t

z t t C x t D u t

i m

 

 

=

=

= + +

= +

=



    (3) 

where:  

 ( ) ( ) =
=

iN

l
ilil tt

1

1)(   ,1)(0  . (4a) 

 ( ) ( )
1

( ) ( ) ,
p

l

il iw t M t 



 
=

=   (4b) 

 ( ) ( ) ( )
1

( ) [ ( ) ] [ ( ) ].
iN

il il il

l

t w t w t   
=

=   (4c) 

Notice, in here, quantity ( ))(tM l
i    denotes 

the fuzzy-set membership function and )(t  be-

lon gs to the fuzzy set l
iM  . 

Now, H control problem for the switched 

fuzzy system (1) can be stated as follows: 

Let a constant 0  be given. Find a contin-

uous-time state-feedback controller )(xuu ii =  for 

each sub-system, and a relevant switching law 

)(ti =  such that: 

(1) The closed-loop control system is asymp-

totically stable whenever 0=iw . 

(2) The output z satisfies 
22 iwz   be-

ginning with zero initial condition, which is typical 

driving mode to operating steady-state equilibrium.  

Fuzzy systems partition the state space into 

many fuzzy sub-areas, and local model is designed 

in every fuzzy sub area. Global model of fuzzy 

system is composed of a series of local model 

which is linked by fuzzy membership function. If 

all the sub-systems of the considered switched sys-

tem are all T-S fuzzy systems (or any other class of 

fuzzy system models for that matter), then such 

systems represent the class of switched T-S fuzzy 

systems.  

In fact, a sketch map of the switched fuzzy 

systems is depicted in Figure 1 where i  denotes 

the system state area of the i -th switched subsys-

tem. il denotes the l -th fuzzy sub-area in i . It 

should be noted again, the switched fuzzy system 

partitions the i  sub-area into l  fuzzy sub-areas 

 iili  ,,,,1 . There is local linear model 

in every fuzzy sub-area, namely local linear model 

in il is its state-space model, 

)()()( tuBtxAtx iilil += .  

The model of every switched sub-area 

1, ,   , ,i m    is composed of local linear 

models which are linked by the fuzzy set member-

ship functions. 

 

Fig. 1. A descriptive  map of switched fuzzy systems  

in their state space 

The design of the switching law for fuzzy sub- 

area model is carried out so as to ensure stability of 

the overall switched fuzzy system. When local 
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model in fuzzy sub-area satisfies the switching law, 

then the switch goes to the i -th sub-system to 

ensure stability of the switched fuzzy system. 

3. MAIN NOVEL RESULTS 

This section derives a condition for the   con-

trol problem to be solvable and presents design 

synthesis employing continuous-time controllers 

for subsystems and a switching law. Here, the 

methodology due to Tanaka and coauthors [14–16] 

for PDC fuzzy controller design is being used for 

every fuzzy sub-system [8].  

Namely, as the plant system (2) also the fuzzy 

controller together both are assumed to have the 

same fuzzy inference premise variables. Therefore, 

in terms of Takagi-Sugeno fuzzy-rule models, it 

follows:  

1 1: if    is  and    is  ,   then

( ) ( ),  1,2, , 1,2, , .

l l l

ic i p ip

i il i

R M M

u t K x t l N i m

 

= = =

(5a) 

Thus again following Zadeh’s fuzzy logic 

inference [14–25], globally the overall control is 

inferred as follows: 

 )()(
1

txKtu
iN

l
ilili 

=

=   , 1, 2, , .i m=  (5b) 

Then globally the overall model of the i -th 

fuzzy sub-system is described by: 

 

( ) )()(

)()()(

1 1

1
21

1

txKDCtz

txKBwBtxAtx

i i

i i

N

l
irilil

N

r
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N

l
iriliilil

N

r
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 +=

 ++=
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(6)

 

Lemma 1. Let )1,1( iiij Njmia
i

  be 

a set of constants satisfying 

 1   ,0     
1

ii

m

i
ij Nja

i
 

=

. 

Then, there exists at least one i such that 

iiij Nja
i

 1  ,0 . 

Proof. It is trivial hence omitted. 

Theorem 1. Let a constant 0  be given. 

Suppose there exist a positive definite matrix P

and constant  0
iij )2,1,2,1( ii Njmi  ==  

such that 

0
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   mi ,,2,1 = , iiiii Nqpj ,,2,1,,, = .   (7) 

Then the state feedback controllers (5) and 

the following switching law (8) solve the investi-

gated H control problem: 

, , ,

2 2

1 12
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Proof. From (7) we know that for any 0x , 

it holds true 
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Notice that (9) holds for any  

},2,1{,,, iiiii Nqpj   and 0
iij .  

The Lemma 1 guarantees that there exists at 

least an i  such that for any iiii qpj ,,,  
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Thus, the switching law defined by (10) is 

well-defined.  

Next, as in [20, 23], let now calculate the time 

derivative of Lyapunov candidate function 

)()())(( tPxtxtxV T= : 
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The second term on the right-hand side of 

(11) is found: 
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The last term on the right-hand of (11) is 

found: 
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By virtue of (10), it follows: 
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When 0=iw , by virtue of relationships (4 a, 

b, c), due to (11) and (14), one can calculate:  
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Thus, the system (1) in the closed loop and 

under controls (5) is asymptotically stable. 

Combing (11), (12) and (13) gives rise to 
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where 

( ) ( )
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T
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T
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++++=
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1

  

Without loss of generality, let suppose zero 

initial state 0)0( =x  and Lyapunov function value 

( ) 0)0( =xV  at the initial state [20, 23]. Now, by 

re-arranging (16) and then solving the integral in it 

for t  from 0 to , one can calculate the following 

inequality yield:  
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denotes the maximal eigenvalue of matrix 



92 G. M. Dimirovski, Y. Jing 

J. Electr. Eng. Inf. Technol. 7 (2) 87–96 (2022) 

1 1 1 1

.
i i i iN N N N

il ir is id ilrsd

l r s d

Q   
= = = =

   
 

In addition, it should be noted that in the 

above derivations to establish results confirming 

system stability analysis [20] the well-known 

Schur Complement Lemma and Uncertainty Re-

presentation Lemma for specific symmetric mat-

rices, in from literature [21–22] play important role 

of crucial tools. Both these lemmas are recalled 

below in here.  

Lemma 2. (Schur Complement). For a given 

the symmetric  

11 12

21 22

M M
M

M M

 
=  

 

, 

where 11M and 21M  are symmetric matrices, the 

following inequality condition statements are 

equivalent: 

1/. 0,M   

2/. 11 0,M   
1

22 21 11 12 0,M M M M−−   

3/. 22 0,M   
1

11 12 22 21 0.M M M M−−   

Lemma 3. Assume the uncertainty ( )F t  and 

matrices L , ,TM M=  ,S and N  of appropriate di-

mensions. Then the following two condition statements 

are equivalent:  

1/. ( ) ( ) 0,T T TM SF t N S F t N+ +   

2/. For 0   an existing deterministic or 

stochastic real-number it holds true 

0.

T

T T

M S N

M S I L

N L I



  

 

 
 

= −  
 − 

 

4. ILLUSTRATIVE EXAMPLE 

In order to illustrate the just presented design 

analysis approach let consider its application to the 

stability control of problem of a room air 

regulating system [8, 19]. The state equation of the 

plant system is given as follows: 

u
TT

kk
T

TT
T

TT
T nnn

21

21

2121

1
)

11
( +−+−= 

 

In here quantities denote: nT  is the air tempe-

rature variable in air-conditioned room [℃]; nT  is 

the rate of air temperature variable of the air-condi-

tioned room [℃/min]; 1T  is the empiric inertia 

time constant of the air-conditioned room [min]; 

1k  is the amplifying coefficient (gain) of the room 

equilibrium constant temperature [℃/℃]; 2T  is the 

empiric inertia time constant of the steam heater 

[min]; 2k  is the gain coefficient of the electric 

heating actuator [℃/℃]; and u  is the control input 

variable in terms of electrical power. The reported 

empirically found time constants are as follows: 

*When room temperature is considered lower 

than human comfort sensing, 30.201 =T  min, 

12 =T  min. 

**When room temperature is considered high-

er than human comfort sensing, 40.301 =T min, 

5.22 =T min. 

In order to illustrate the stability control de-

sign analysis of this system, coordinate transfor-

mation is carried out so as to transform the prob-

lem into zero-state stability control. Taking into 

consideration the available redundancy of circuit 

actuator the common sense fuzzy model is conver-

ted into the switched fuzzy model to advance 

arriving at scheduled temperature rise speed of air 

regulating system operation. Therefore the dyna-

mics of the considered air regulating system opera-

tion is approximate by the following T-S fuzzy rule 

based model: 

1 1

1 1 11

11 111 1 211 1 11 11 1

: if  is ,   ,  then 

, ,

R x P close to positive

x A x B w B u z C x D u= + + = +
 

2 2

1 1 11

12 112 1 212 1 12 12 1

 : if  is ,   , then 

, ,

R x N close to negative

x A x B w B u z C x D u= + + = +

 
1 1

2 1 21

21 121 2 221 2 21 21 2

: if  is  ,   , then 

( ) , ,

R x P close to positive

x t A x B w B u z C x D u= + + = +
 

2 2

2 1 21

22 122 2 222 2 22 22 2

: if  is ,    , then

 ( ) , ,

R x N close to negative

x t A x B w B u z C x D u= + + = +
 

where:  










−−

−
=

0493.1943.0

45.0
11A , 
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
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−
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4529.0132.0
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
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
=

4926.0

0
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
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
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
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−−
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21
21A ,  






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−−
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7535.04706.0

21
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







==

1

0
122121 BB , 






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=

5765.0

0
221B ,  









=

1765.0

0
222B , 

 111211 == CC ,  012221 == CC , 

03.01211 == DD , 04.02221 == DD . 

The issue of defining appropriate membership 

functions as pointed out by Lotfi A. Zadeh [25], 

the founder and inventor of fuzzy logic and fuzzy 

systems [25], is essentially an application depen-

dent problem. Because it is dependent on the uni-

verse of discourse set (i.e. physical nature of plan’s 

state space) hence it is open to exploration within 

the context of the given case study application. 

This issue was thoroughly explored in the studies 

[8, 19], and concluded that fuzzy-set membership 

functions defined below have wide applicability 

and usually are optimum statedependent ones: 

1 1
111 21

2 2
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Further, let explore the considerable case with 

robustness index level 1= . Then, due to the 

derived state-feedback control formula: 

)()(
1

txKtu
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l
ilili 

=

=  , 2,1=i , 

the inequality of Theorem 1 is subject to evaluating 

calculation of the following matrix inequality:  
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iiiii Nqpj ,,2,1,,, = .           (17) 

Without loss of generality let further be ass-

umed simple and uniform values 1=
iij , because 

these are out of the matrix inequality. 

According to Schur Complement Lemma 

[21–23], matrix inequalities (17) can be turned into 

the solvable LMI and, if needed to involve some 

uncertainty factor, further alyzed by using Uncer-

tainty Representation Lemma. Then the solution 

for gain matrices are computed with the LMI tool-

box as follows: 

  ]1148.0    131.0[11 −−=K ,

]302.2    0623.0[12 −−=K , 

]4986.2    4991.4[21 −−=K ,

]4986.3    4991.5[22 −−=K , 









=

6417.02146.0

2146.00937.0
P . 

The design the switching law 

( ) arg min{ ( )}ix V x = , 

as emphasized in Theorem 1, in this example was 

emulated by means of the following formula: 
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1 12
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=

(18) 

A selected set of graphically depicted simu-

lation results using Matlab-Simulink platform [34–

37] are presented in the sequel in order to demon-

strate both the acting feasibility and achievable 

performance by the proposed control design syn-

thesis in the closed loop. The simulation results are 
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obtained by assuming plant system is at initial dis-

turbed states to cold/chilly temperatures  T03− . 

Time evolutions of the system states of this 

two-subsystem, two-dimensional system plant in 

four-rule Takagi-Sugeno representation model the 

closed loop with initial conditions  T03−   and 

under the hybrid control law of the  control and 

switching based control (Lemma 1 and Theorem 1) 

are presented in Figure 1. Similarly the time-evol-

ution of the effective acting switching time sequen-

ce is presented in Figure 2. 

 

Fig. 1. The state response of the system with constructed 

overall PDC controller (5a)–(5b) according to Theorem 1 

under switching law (8) 

 

Fig. 2. The switching time sequence (8) that accompany the 

constructed PDC controller (5a)–(5b) according to Theorem 1 

It should be noted, by the time 10t =  s, swit-

ching sequence exhibits almost periodically repe-

ated switching jumps. Apparently, the state feed-

back H robust control problem with 1=  guar-

antying asymptotic stability is solved and the res-

petive two controls are depicted in Figure 3. Furth-

ermore, in this particular plant example, it is inter-

esting to notice that as if from the time 10t =  s 

onwards there appeared no more effective need for 

controlling actions. 

 

Fig. 3. The Hꝏ state-feedback controls (5b) that accompany 

the constructed controller in PDC-architecture (5a) according 

to Theorem 1, and switching law (8); no further controlling 

activities are noticeable beyond 10 s whereas rather strong are 

during the first few seconds 

Practically the equilibrium operating rise of 

controlled room temperature to the equilibrium 

state is achieved in finite time. 

It is also interesting to note, in this traditional 

temperature control system but employing the hyb-

rid Hꝏ plus switching sequence in PDC-architec-

ture of fuzzy-logic driven control certain addition-

nal highlights are obtained when subject to un-

known impulsive Markov stochastic sudden distur-

bance hits on the actuators over longer period of 

operating time. At this point let recall the introduc-

ed Uncertainty Representation Lemma in the pre-

vious section. The found simulation results for fe-

asible acting controls and achievable controlled 

states are depicted in Figures 4 and 5, respectively. 

 

Fig. 4. Time history of the controlling activities under 

employing the proposed hybrid Hꝏ plus switching sequence in 

PDC-architecture of fuzzy-logic driven control during a long 

operating time when it is being disturbed by sudden unknown 

Markov impulsive hits on actuating heaters 
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Fig. 5. Time history during the first 40 seconds of the 

controlled temperature state following Markov impulsive 

disturbance hits on actuating heaters; this same pattern repeats 

almost periodically following the operating controls. 

5. CONCLUSION 

The problem of state feedback H control for 

switched fuzzy systems is investigated via a non-

traditional approach. In particular, considerable 

attention is focused on exploring switched fuzzy 

model involving implicit context of reliability, 

which has not been considered in previous studies 

even in context of reliable controls. The state space  

  nR  of a switched system observed as a 

(fuzzy-)set partition    1{ , , , , }i m    

into m  sub-areas, thus every subarea emulating 

one switched subsystem. The orchestrated swit-

ching among subsystems via a purpose driven 

switching law design is aimed at ensuring stability 

of the overall switched system.  

On the grounds of envisaged switching stra-

tegy, feedback controller and switching law of the 

state-dependent form are developed such that the 

problem of H control is solved. Sufficient con-

dition for asymptotic stability based on Lyapunov 

theory is given. According to this condition, in 

order to check closed-loop stability a certain con-

vex combination of subsystem matrices is to be 

checked, which is fairly easy. Simulation results 

for an application to real-world room air-condi-

tioning illustrate both the effectiveness and feasible 

quality operating performance of this control de-

sign synthesis.  
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