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Abstract: The lack of power system inertia is becoming a potential issue as penetration of renewable energy sources in the power
system increases. This is a result of an agenda set at worldwide level, to maximize integration of renewables and turn away from fossil
fuels. Along with the potential problem of lack of power system inertia comes the difficulty of estimating equivalent power system
inertia in a system that is becoming increasingly influenced by power electronics. While model-based analyses are possible, they do
become increasingly difficult to solve. As a way to circumvent the inconvenience of estimating equivalent power system inertia,
Machine Learning has proven to be a viable option. Recurrent, Convolutional, Physics Informed Neural Networks, including other
types of regression focused approaches have been previously analyzed on this topic, and proven to be potentially useful. This paper
makes a comparison between two approaches to estimation of equivalent power system inertia. The first approach is proposed by the
authors, and it involves combination of Contrastive Learning and Ridge Regression. The second approach is Recurrent Neural
Networks, which have been previously implemented on this kind of problem. Both methods are tested on simulated data from the IEEE
24-bus system. Different performance metrics are compared, on different dataset sizes. The results obtained from the study show that
the method proposed by the authors produces better results in cases when there is deficiency of training data, leading to the conclusion
that the proposed methodology may be potentially useful for such cases.
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CIIOPEJIFA IOMEI'Y KOHTPACTHO YYEIE U PEKYPEHTHU
HEBPOHCKMU MPEKH 3A TIPOLNEHKA HA HTHEPIINJA KAJ
EJEKTPOEHEPT'ETCKU CUCTEMHA

AmncrpakTt: Co 3rojeMyBambeTO Ha Y/EIOT Ha OOHOBIMBM U3BOPH HAa €HEPrHja BO EIEKTPOECHEPreTCKHOT CHCTEM, Ce I10jaByBa
MOTEHLMjATHUOT HPOoOIIeM CO HEJIOCTATOKOT Ha MHEPLHja Kaj elIeKTPOoeHepreTcKHoT cucteM. OBa e pe3ynTaT Ha CBETCKaTa areHza 3a
MaKCHMM3UPaHa MHTErpalnja Ha OOHOBINBY M3BOPH Ha €HEpruja 1 oTdpiame Ha (OCHIHUTE roprBa Kako eHepreHc. [Ipobiaemor co
MHEpIHjaTa € MPOCJIeCH U CO MOTSUIKOTHH IPH NPecMeTKaTa Ha eKBUBAJICHTHATA HHEPLIMja Ha EIICKTPOCHEPTeTCKUOT CHCTEM, 3apajiu
MIPOTPECUBHOTO 3rOJIEMYBaF-¢ Ha BIMjAHHETO HA €HEPreTcKaTa eIeKTPOHHKA MPH MPOM3BOACTBOTO HA eNeKTpHdHa eHepruja. Mako
aHANM3M IITO Ce TeMeNaT Ha MaTeMATHIKH MOJIENH CE€ BO3MOXHH, HICTHTE CTAaHyBaaT MTIOKOMILIEKCHU U BOSIHO MOTEMIKH 32 PEIaBambe.
MamuHCKOTO yueme ce IojaByBa Kako OIIHja 3a 3a00MKONyBame Ha OBOj MpoOyieM. PexypeHTHHTE, KOHBOIYIMOHHTE, (DU3HUKH
nHpOpMHpaHUTE HEBPOHCKHM MPEXHW, BKIYdyBajKH U JPyrH IpUCTany, OWie MPETXOTHO AaHAIM3HpPaHH BO KOHTEKCT Ha OBaa
npoOJieMaTHKa, U ce JOKa)XaJo AeKa MMaaT MOTeHIMjasHa npuMena. OBOj TPyA IpaBH KOMIIapanyja Momery JBa IPHCTaNH 3a
NIPOLICHKA Ha eKBUBAJICHTHATA UHEPIHja BO €IEKTPOSHEPreTCKHOT cucTeM. IIpBHOT IpHCTan € IpeUIoXkKeH O CTpaHa Ha aBTOPHTE, U
ondaka ynorpeba Ha KOMOHMHaNHWja O KOHTpacTHO yuewme u “Ridge” perpecuja. Bropuor mpucrtanm ru omndaka peKypeHTHHTE
HEBPOHCKHU MPEXXH, KO Beke Ouiie ynoTpeOyBaHH 3a BaKOB THUI Ha po0iieM. /IBeTe MeTou ce TeCTUpaHU Ha CUHTETHYKHU MOAATOLH
nobuenn on cumynanuja Ha IEEE tect mpexara co 24 jasmu. [lepdopmaHcuTe Ha IBaTa MpuCTanu ce cropeneHd. [loOuenure
pe3ynTaTH MOKaXKyBaaT JeKa NMPeAsoKeHHOT MpHCTAN Of CTpaHa Ha aBTOPHUTE JaBa MoAoOpM pe3yinTaTH BO CIIydaeBH Kora MMa
HEJIOCTAaTOK Ha ITOJATOIH 3a TPEHHpamhe Ha MOJIEIHUTE, IITO HaBeIyBa J0 3aKIy4OK JIeKa METOJO0JIOTHjaTa MOoXeOH nMa IpuMeHa BO
BaKBU CHTYaIHH.

Kay4yHu 300poBH: KOHTPAaCTHO y4ere, HEBPOHCKHA MPEXKHU, WHEpLHja Kaj SCKTPOCHEPreTCKH CHCTEMH, PEerpecHBHa aHau3a,
CaMOHAJTJIElyBaHO YUEH-E.

renewable energy sources (RES) into modern power

I. INTRODUCTION systems. This shift is primarily driven by the need to reduce

reliance on fossil fuels for electricity generation, thereby

promoting cleaner and more sustainable energy

alternatives. As part of this global movement, considerable

NE of the most prominent and widely recognized
trends in the energy sector today is the ongoing
transition toward widespread integration of
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efforts have been directed toward maximizing deployment
of RES technologies, with the vision of achieving 100%
RES penetration becoming increasingly familiar within the
industry [1]. Among these technologies, photovoltaic (PV)
power plants have received particular attention due to their
scalability and falling costs [2]. Notably, developed nations
such as Germany have made substantial progress in this
regard, reaching a renewable energy share of
approximately 51.6% in their electricity mix as early as
2021 [3].

However, despite their numerous advantages, renewable
energy sources (RES) also present certain challenges that
must be carefully addressed. A key limitation lies in their
inherent intermittency, .i.e. many RES technologies, such
as solar and wind, are subject to fluctuations in power
output due to their dependence on weather and
environmental conditions. As a result, they are often unable
to provide consistent and controllable supply of electricity.
This variability can pose difficulties for grid stability and
energy planning, particularly as RES penetration increases.
Consequently, a lot of research has emerged focusing on
forecasting RES generation in order to enhance
predictability and enable better integration into power
systems [4] [5].

Another equally significant challenge introduced by the
increasing penetration of RES is the reduction of power
system inertia. Inertia is a fundamental property that
contributes to transient stability of the power system by
resisting sudden changes in frequency. This issue arises
primarily because most RES technologies are interfaced
with the grid through power electronic devices, in
particular Power Inverters (PIs) [6]. Unlike traditional
Synchronous Machines (SM), which inherently possess
rotating masses that store kinetic energy, PIs lack physical
inertia and operate on entirely different principles. As a
result, they do not naturally contribute to system inertia. To
address this shortcoming, researchers have been actively
developing advanced control strategies that enable Pls to
emulate the inertial behavior of synchronous generators.
One such approach that has gained increasing attention is
known as Virtual Inertia (VI) [7], which aims to replicate
the stabilizing effect of mechanical inertia through
algorithmic control.

Therefore, implementing control strategies that allow
PIs to provide VI represents a promising and practical
solution for mitigating the loss of power system inertia in
RES-dominated grids. While effective in principle, these
control schemes significantly increase the complexity of
underlying mathematical models used to represent the
power system, especially when performing dynamic
analyses or stability assessments. This added complexity
becomes especially pronounced when attempting to
estimate the power system’s equivalent inertia. The
inclusion of VI through inverter-based resources
introduces additional layers of control dynamics and
nonlinear behavior, making traditional estimation methods
more challenging and less straightforward.

As a result, Machine Learning (ML) has emerged as a
powerful and increasingly popular tool for addressing this
challenge. Rather than relying solely on intricate and often
computationally intensive mathematical formulations,
ML-based approaches aim to learn underlying patterns and
relationships within system data. By doing so, they offer an

alternative means of estimating power system inertia, one
that can potentially provide accurate predictions without
the need for explicit modeling of the system’s physical
dynamics. This data-driven perspective is particularly
appealing in modern, complex grids where traditional
analytical methods may fall short or become impractical.

Numerous research has been dedicated to application of
ML techniques for power system inertia estimation [8] [9].
Among the most prominent and widely adopted
approaches in recent literature are Neural Networks (NN)
[10] [11], particularly specialized architectures such as
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs) [12] to [15], and Residual Neural
Networks (ResNets) [16]. These models have
demonstrated strong potential in capturing complex
temporal and spatial patterns from power system data. An
advanced extension of neural networks that has gained
considerable attention is the Physics-Informed Neural
Network (PINN) [17]. Unlike conventional NNs that rely
purely on data-driven learning through statistical loss
functions, PINNs incorporate additional physical
constraints typically represented through domain-specific
equations such as the swing equation used for modeling
SMs into the loss function. This hybrid approach has
shown promising results in several studies [18] to [21],
particularly in scenarios where training data is limited. In
the context of inertia estimation, PINNs offer a compelling
solution by embedding physical laws directly into the
learning process. However, successful implementation
requires accurate measurements of system frequency and
the Rate of Change of Frequency (RoCoF), as well as
reliable values for system parameters such as inertia
constant and damping coefficient, which are essential for
guiding the network's learning in a meaningful way.

One of the primary obstacles hindering effective
application of NNs for power system inertia estimation is
scarcity of high-quality measurement data. Typically, input
data required for training such models is obtained from
Phasor Measurement Units (PMUs), which provide time-
synchronized measurements of key electrical quantities
such as voltage, current, and frequency. However, in many
power systems, especially in developing regions or at the
distribution level, the number of installed PMUs may be
limited, resulting in insufficient data to adequately train
data-hungry neural network models. As previously noted,
PINNs offer a potential workaround by incorporating
physical knowledge into the learning process, thereby
reducing reliance on large datasets. Nonetheless, this
approach is not universally effective, and its performance
can still be constrained in scenarios where critical
measurements or system parameters are missing or
unreliable.

In this paper, an approach specifically designed to
address challenges arising from limited availability of
training data is proposed, which is a common constraint in
many real-world power systems. Additionally, the
proposed approach’s performance is tested against a well-
established method - RNNs, to provide a comprehensive
evaluation. Key contributions of this work can be
summarized as follows:

e we introduce a novel approach aimed at mitigating

effects of training data scarcity in ML applications for
power system inertia estimation;
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e we employ Contrastive Learning (CL), a self-
supervised learning technique, to extract meaningful
representations and identify underlying patterns
within training data;

e we leverage embeddings learned through CL in a
Ridge Regression (RR) framework, enabling
development of a predictive model that estimates the
inertia coefficient based on key power system
measurements, including angular frequency, Rate of
Change of Frequency (RoCoF), and node voltage.

The rest of the paper is organized as follows: Section II

provides a brief introduction to Contrastive Learning and
TS2Vec framework. In Section III, we explain data pre-
processing and methodology for training the models
proposed in the paper. Section IV presents a case study,
and Section V concludes the paper.

II. CONTRASTIVE LEARNING FOR TIME SERIES

As outlined in [22], ML is traditionally categorized into
four main types: Supervised Learning, Semi-Supervised
Learning, Unsupervised Learning, and Reinforcement
Learning. The primary distinction between Supervised and
Unsupervised Learning lies in the presence of labeled data,
i.e. Supervised Learning relies on labeled datasets to train
models, whereas Unsupervised Learning operates without
them. A notable limitation of Supervised Learning,
particularly in engineering applications, is the need for
domain experts to manually label large volumes of data.
This process is often labor-intensive, prone to human error,
and may not always be feasible, especially when dealing
with complex systems or large-scale datasets. To overcome
these challenges, another paradigm known as Self-
Supervised Learning has gained attention. This approach
enables models to learn useful representations through
pretext tasks that exploit inherent structures or correlations
within input data, eliminating the need for manually
assigned labels. As a result, Self-Supervised Learning can
significantly reduce the burden of data annotation while
still achieving high levels of performance in downstream
tasks.

Although the concepts of Self-Supervised and Semi-
Supervised Learning have been established for quite some
time and are not considered new developments [23], they
have recently gained renewed attention due to their
applicability in modern Machine Learning challenges.
Contrastive Learning, a subfield within Self-Supervised
Learning, focuses on identifying and learning meaningful
relationships within un-labelled data by distinguishing
between similar and dissimilar data pairs. This technique
has proven effective across a wide range of domains. In
particular, CL has played a pivotal role in advancing
generative Al, which has seen widespread adoption among
the general public. Its most prominent applications are
found in areas such as natural language processing,
computer vision, audio signal processing, and beyond [22]
[23], where learning from un-labelled data at scale has
become increasingly valuable.

Another domain where CL has shown significant
promise, particularly relevant to this paper, is in the
analysis of time series data. Time series play a crucial role
in many real-world applications, including energy demand
forecasting, financial market analysis, climate modeling,
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and virtually any context where observed quantities are
strongly influenced by temporal dynamics. In this context,
the authors of [24] introduced 7S2Vec, a general-purpose
framework specifically designed for learning robust
representations from time series data using CL principles.
At the heart of TS2Vec lies a hierarchical contrastive
learning mechanism, which aims to extract meaningful
features from subsequences of varying lengths and scales.
This allows the model to learn contextual representations
across different semantic levels, making it highly adaptable
to diverse temporal patterns. Unlike traditional methods
that may require handcrafted features or domain-specific
preprocessing, TS2Vec is designed to be model-agnostic
and data-efficient, requiring minimal supervision.
According to its authors, the framework supports a broad
range of downstream tasks, including time series
classification, forecasting, and anomaly detection, making
it a powerful tool for applications where labeled data is
limited but temporal dependencies are rich and
informative.

In this study, TS2Vec framework is selected for
implementation as a key component of the proposed
analysis. Its flexibility and effectiveness in learning
representations from time series data make it well-suited
for the task of power system inertia estimation, where
capturing temporal dependencies is essential. TS2Vec is
available as an open-source Python module..

III. DATA PREPROCESSING & METHODOLOGY

This section outlines the structure of the dataset as well
as the methodology used to develop the models aligned
with the objectives of this study. The dataset utilized
originates from [15] and consists of synthetic data
generated through dynamic simulations conducted using
Simulink model of the IEEE 24-bus power system. These
simulations were designed to emulate realistic transient
behavior under varying system conditions. Detailed
description of the simulation setup can be found in the
original source. For reproducibility and further
experimentation, link to the dataset is provided in the
references [25].

For each PMU installed in the system, three
measurements are recorded: angular frequency (w), Rate of
Change of Frequency (RoCoF, denoted as dw/df), and
voltage (v). These variables constitute the features of the
dataset. Each of the three measurements is treated as an
individual feature per PMU, resulting in a total of 24
features for the eight PMUs installed across the IEEE 24-
bus test system. This structured representation allows the
model to capture spatially distributed dynamic behavior
across the grid. The target variable, or label, for each data
sample is the value M = 2-H, where H represents the
equivalent power system inertia constant.

Each time sequence in the dataset spans a duration of
one second, during which 200 samples are collected at a
sampling rate of 200 Hz. Within a given sequence, the
target value MMM remains constant; however, the feature
values w, dw/dt, and v vary throughout the time window.
This variability is introduced by applying a probing signal
to the system, which induces small disturbances during the
observation period. These disturbances are designed to
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mimic realistic grid fluctuations and enable the model to
learn meaningful dynamic patterns across time. A more
detailed explanation of the signal injection process and
simulation methodology is provided in [15].

The simulation procedure is carried out for 11 distinct
values of M, ranging from 3 seconds to 8 seconds. To
introduce variability and enrich the dataset, 100 different
magnitudes of the probing signal are applied for each value
of M, resulting in a total of 1,100 unique time sequences.
Consequently, the complete dataset comprises of 1,100
observations, where each observation includes 24 features
and a corresponding label M. Each feature represents a
time-dependent signal with sequence length of 200
samples. Formally, if the number of observations is
denoted as J, the sequence length as K, and the number of
features as L, then the input features can be structured and
fed into the learning algorithm as a three-dimensional
array:

A c RJXKXL (1)

Correspondingly, the target values M form a one-
dimensional array of length J, since each time sequence is
associated with a single, constant inertia value.

The overall training process of the proposed method is
divided into two main stages:

1) training a Contrastive Learning model using training

dataset;

2) training a Ridge Regression model using the feature

representations obtained from CL stage.

In the first stage, the training data - consisting solely of
input features without labels - is fed into the CL algorithm.
The objective at this stage is to learn meaningful
representations by capturing intrinsic relationships within
the data, such as temporal dependencies, multivariate
interactions across features, and both local and global
dynamics within each time sequence. The output of this
stage is a compressed embedding for each time sequence,
which encapsulates the learned structure of the data in a
lower-dimensional space. In the second stage, these
embeddings are paired with their corresponding labels M,
and used to train the RR model. This regression model then
learns to map the extracted representations to the system
inertia values, and is subsequently evaluated on validation
dataset to assess its performance.

To evaluate effectiveness of the proposed CL/RR
approach, its performance is compared against that of
RNNs, which serve as baseline method. Both models are
trained and tested on identical datasets to ensure fair
comparison. To further assess robustness and
generalization capability under varying data availability,
multiple models are trained across different dataset sizes.
This approach allows for a more comprehensive
understanding of how each method performs under data-
rich and data-scarce conditions. Detailed information
regarding the number of trained models, the specific
dataset partitions used, and the corresponding performance
metrics is provided in Section I'V.

Implementation of the proposed model is carried out in
Python, utilizing TS2Vec framework for contrastive

representation learning and Scikit-Learn library for
training the RR model. For baseline comparison, the RNN
model is developed using the PyTorch package. To ensure
consistency and reproducibility across experiments, a fixed
random seed value of 101010 is used during the training of
both CL-based models and RNNs. Additionally, all feature
values and corresponding labels are normalized to the
range [0, 1] prior to training, in order to standardize input
data and facilitate stable model convergence.

IV. CASE STUDY

As outlined in the previous section, the dataset employed
in this study is derived from simulations conducted on
Simulink model of the IEEE 24-bus power system.
Measurements are collected from eight distinct PMUs
placed throughout the network. Since each PMU provides
three measurements, w, dw/dt, and v, the resulting dataset
contains a total of 24 features per observation. In total, the
dataset comprises of 1,100 time-sequences, each
representing a one-second window sampled at a rate of 200
Hz. This results in 200 time-steps per observation,
capturing the system’s transient behavior in high temporal
resolution.

To investigate the impact of dataset size on model
performance, experiments are conducted using varying
proportions of the full dataset. Models are trained on
subsets of the data, with dataset sizes expressed as
percentages of the original 1,100 observations. This
approach enables evaluation of how each model, both
CL/RR and RNN, scales with data availability and how
performance degrades or improves under limited data
conditions. The specific dataset sizes used in the
experiments are summarized in Table I.

Furthermore, each of the dataset subsets listed in Table
I is further divided into training and validation sets using
an 80/20 split ratio. This ensures that the models are
evaluated on previously unseen data, allowing for reliable
assessment of their generalization capabilities across
different dataset sizes.

For each of the five dataset sizes presented in Table I, 10
models are trained using both CL/RR approach and RNN-
based model. This results in 100 trained models in total.
Performance of the models is assessed using four key
evaluation metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), Coefficient of Determination (R?),
and validation accuracy, defined as the percentage of
predictions falling within a +0.5 s tolerance range of the
true M value.

TABLEI
CASES FOR DIFFERENT DATASET SIZES

Case # 1 2 3 4 5
Size [%] 20 40 60 80 100
Observations 220 440 660 880 1100

Since each model configuration is trained 10 times, the
median value of each metric across the 10 runs is reported
to account for variability and provide a more representative
measure of performance. The summarized results are
presented in Table II.

J. Electr. Eng. Inf. Technol. 10 (1), 12-18 (2025)
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TABLE II
RESULT FROM VALIDATION OF MODELS

Case  Model MSE  MAE R? Accuracy [%]
| RNN 0.919 0.812  -0.031 34.1
CL/RR 0.1 0.244 0.888 88.6
) RNN 0.749 0.737 0.338 30.7
CL/RR 0.114 0.228 0.899 86.4
3 RNN 1.169 0.927  -0.192 26.5
CL/RR 0.098 0.235 0.9 90.2
4 RNN 0.018 0.092 0.981 98.6
CL/RR 0.068 0.174 0.93 92.1
5 RNN 0.027 0.112 0.976 97.7
CL/RR 0.043 0.149 0.961 95.9

The results presented in Table II demonstrate that the
proposed CL/RR models outperform the RNN-based
models in scenarios where the dataset size is limited. Even
at 60% of the original dataset, RNN models exhibit poor
performance, highlighting their sensitivity to data scarcity.
To assess model stability, the Median Absolute Deviation
(MAD) is calculated alongside the median value for each
metric, based on the 10 training runs per case. The results
show that most models exhibit minimal deviation from the
median, indicating consistent performance. The only
notable exception is RNN models trained on 80% of the
dataset, which display slightly higher, but still relatively
small variations. As these deviations are negligible and do
not significantly alter the conclusions, they are not reported
in Table II. Interestingly, in cases 4 and 5, where larger
amounts of training data are available, RNN models begin
to outperform CL/RR approach, suggesting that RNNs
may be more effective when sufficient data is present.

Effectiveness of the proposed methodology on smaller
datasets is further supported by the visualization shown on
Figure 1, which presents a t-SNE plot of learned
embeddings. These embeddings are taken from three of the
training runs of the CL model corresponding to cases 1, 2
and 3 respectively.

Embeddings Visualized via t-SNE
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Embeddings Visualized via t-SNE
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Fig. 1. Embeddings obtained from CL. a) Case 1; b)
Case 2; ¢) Case 3

Despite the limited amount of training data, t-SNE
visualization reveals that the model is capable of
distinguishing meaningful structures within the data, as
evidenced by the formation of distinct clusters. This
clustering behavior indicates that the Contrastive Learning
stage successfully captures underlying relationships in the
time series, even under data-constrained conditions, further
validating the model’s robustness.

To further demonstrate, Figure 2 shows plots of
predicted and real values of M from the validation of the
same cases.
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True and Predicted M values
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Fig. 2 True and predicted M values. a) Case 1; b) Case
2; c) Case 3

V. CONCLUSION

This paper presents a methodology for addressing data
scarcity in the context of power system inertia estimation.
The proposed approach, which combines Contrastive
Learning for representation extraction with Ridge
Regression for model training, was evaluated against

traditional Recurrent Neural Network models across
various dataset sizes.

The results demonstrate that CL/RR models outperform
RNNs in scenarios with limited data availability,
successfully capturing meaningful patterns even when
trained on as little as 20% of the original dataset. However,
as the amount of available data increases, RNN models
begin to show marginally better performance, reflecting
their strength in data-rich environments.

These findings suggest that the proposed CL/RR
methodology may hold potential for practical deployment,
particularly in real-world settings where measurement data
is scarce and analytical estimation of equivalent power
system inertia is challenging. By leveraging Self-
Supervised Learning to uncover temporal and multivariate
relationships, this approach offers a promising alternative
for accurate inertia estimation in modern, inverter-
dominated grids.
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