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Abstract: The lack of power system inertia is becoming a potential issue as penetration of renewable energy sources in the power 

system increases. This is a result of an agenda set at worldwide level, to maximize integration of renewables and turn away from fossil 

fuels. Along with the potential problem of lack of power system inertia comes the difficulty of estimating equivalent power system 

inertia in a system that is becoming increasingly influenced by power electronics. While model-based analyses are possible, they do 

become increasingly difficult to solve. As a way to circumvent the inconvenience of estimating equivalent power system inertia, 

Machine Learning has proven to be a viable option. Recurrent, Convolutional, Physics Informed Neural Networks, including other 

types of regression focused approaches have been previously analyzed on this topic, and proven to be potentially useful. This paper 

makes a comparison between two approaches to estimation of equivalent power system inertia. The first approach is proposed by the 

authors, and it involves combination of Contrastive Learning and Ridge Regression. The second approach is Recurrent Neural 

Networks, which have been previously implemented on this kind of problem. Both methods are tested on simulated data from the IEEE 

24-bus system. Different performance metrics are compared, on different dataset sizes. The results obtained from the study show that

the method proposed by the authors produces better results in cases when there is deficiency of training data, leading to the conclusion

that the proposed methodology may be potentially useful for such cases.

Keywords: Contrastive Learning, Neural Networks, Power System Inertia, Regression Analysis, Self-Supervised Learning. 

СПОРЕДБА ПОМЕЃУ КОНТРАСТНО УЧЕЊЕ И РЕКУРЕНТНИ 

НЕВРОНСКИ МРЕЖИ ЗА ПРОЦЕНКА НА ИНЕРЦИЈА КАЈ 

ЕЛЕКТРОЕНЕРГЕТСКИ СИСТЕМИ

Апстракт: Со зголемувањето на уделот на обновливи извори на енергија во електроенергетскиот систем, се појавува 

потенцијалниот проблем со недостатокот на инерција кај електроенергетскиот систем. Ова е резултат на светската агенда за 

максимизирана интеграција на обновливи извори на енергија и отфрлање на фосилните горива како енергенс. Проблемот со 

инерцијата е проследен и со потешкотии при пресметката на еквивалентната инерција на електроенергетскиот систем, заради 

прогресивното зголемување на влијанието на енергетската електроника при производството на електрична енергија. Иако 

анализи што се темелат на математички модели се возможни, истите стануваат покомплексни и воедно потешки за решавање. 

Машинското учење се појавува како опција за заобиколување на овој проблем. Рекурентните, конволуционите, физички 

информираните невронски мрежи, вклучувајќи и други пристапи, биле претходно анализирани во контекст на оваа 

проблематика, и се докажало дека имаат потенцијална примена. Овој труд прави компарација помеѓу два пристапи за 

проценка на еквивалентната инерција во електроенергетскиот систем. Првиот пристап е предложен од страна на авторите, и 

опфаќа употреба на комбинација од контрастно учење и “Ridge” регресија. Вториот пристап ги опфаќа рекурентните 

невронски мрежи, кои веќе биле употребувани за ваков тип на проблем. Двете методи се тестирани на синтетички податоци 

добиени од симулација на IEEE тест мрежата со 24 јазли. Перформансите на двата пристапи се споредени. Добиените 

резултати покажуваат дека предложениот пристап од страна на авторите дава подобри резултати во случаеви кога има 

недостаток на податоци за тренирање на моделите, што наведува до заклучок дека методологијата можеби има примена во 

вакви ситуации. 

Клучни зборови: контрастно учење, невронски мрежи, инерција кај електроенергетски системи, регресивна анализа, 

самонадгледувано учење. 

I. INTRODUCTION

NE of the most prominent and widely recognized 

trends in the energy sector today is the ongoing 

transition toward widespread integration of 

renewable energy sources (RES) into modern power 

systems. This shift is primarily driven by the need to reduce 

reliance on fossil fuels for electricity generation, thereby 

promoting cleaner and more sustainable energy 

alternatives. As part of this global movement, considerable O 
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efforts have been directed toward maximizing deployment 

of RES technologies, with the vision of achieving 100% 

RES penetration becoming increasingly familiar within the 

industry [1]. Among these technologies, photovoltaic (PV) 

power plants have received particular attention due to their 

scalability and falling costs [2]. Notably, developed nations 

such as Germany have made substantial progress in this 

regard, reaching a renewable energy share of 

approximately 51.6% in their electricity mix as early as 

2021 [3]. 

However, despite their numerous advantages, renewable 

energy sources (RES) also present certain challenges that 

must be carefully addressed. A key limitation lies in their 

inherent intermittency, .i.e. many RES technologies, such 

as solar and wind, are subject to fluctuations in power 

output due to their dependence on weather and 

environmental conditions. As a result, they are often unable 

to provide consistent and controllable supply of electricity. 

This variability can pose difficulties for grid stability and 

energy planning, particularly as RES penetration increases. 

Consequently, a lot of research has emerged focusing on 

forecasting RES generation in order to enhance 

predictability and enable better integration into power 

systems [4] [5]. 

Another equally significant challenge introduced by the 

increasing penetration of RES is the reduction of power 

system inertia. Inertia is a fundamental property that 

contributes to transient stability of the power system by 

resisting sudden changes in frequency. This issue arises 

primarily because most RES technologies are interfaced 

with the grid through power electronic devices, in 

particular Power Inverters (PIs) [6]. Unlike traditional 

Synchronous Machines (SM), which inherently possess 

rotating masses that store kinetic energy, PIs lack physical 

inertia and operate on entirely different principles. As a 

result, they do not naturally contribute to system inertia. To 

address this shortcoming, researchers have been actively 

developing advanced control strategies that enable PIs to 

emulate the inertial behavior of synchronous generators. 

One such approach that has gained increasing attention is 

known as Virtual Inertia (VI) [7], which aims to replicate 

the stabilizing effect of mechanical inertia through 

algorithmic control. 

Therefore, implementing control strategies that allow 

PIs to provide VI represents a promising and practical 

solution for mitigating the loss of power system inertia in 

RES-dominated grids. While effective in principle, these 

control schemes significantly increase the complexity of 

underlying mathematical models used to represent the 

power system, especially when performing dynamic 

analyses or stability assessments. This added complexity 

becomes especially pronounced when attempting to 

estimate the power system’s equivalent inertia. The 

inclusion of VI through inverter-based resources 

introduces additional layers of control dynamics and 

nonlinear behavior, making traditional estimation methods 

more challenging and less straightforward. 

As a result, Machine Learning (ML) has emerged as a 

powerful and increasingly popular tool for addressing this 

challenge. Rather than relying solely on intricate and often 

computationally intensive mathematical formulations, 

ML-based approaches aim to learn underlying patterns and 

relationships within system data. By doing so, they offer an 

alternative means of estimating power system inertia, one 

that can potentially provide accurate predictions without 

the need for explicit modeling of the system’s physical 

dynamics. This data-driven perspective is particularly 

appealing in modern, complex grids where traditional 

analytical methods may fall short or become impractical. 

Numerous research has been dedicated to application of 

ML techniques for power system inertia estimation [8] [9]. 

Among the most prominent and widely adopted 

approaches in recent literature are Neural Networks (NN) 

[10] [11], particularly specialized architectures such as 

Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs) [12] to [15], and Residual Neural 

Networks (ResNets) [16]. These models have 

demonstrated strong potential in capturing complex 

temporal and spatial patterns from power system data. An 

advanced extension of neural networks that has gained 

considerable attention is the Physics-Informed Neural 

Network (PINN) [17]. Unlike conventional NNs that rely 

purely on data-driven learning through statistical loss 

functions, PINNs incorporate additional physical 

constraints typically represented through domain-specific 

equations such as the swing equation used for modeling 

SMs into the loss function. This hybrid approach has 

shown promising results in several studies [18] to [21], 

particularly in scenarios where training data is limited. In 

the context of inertia estimation, PINNs offer a compelling 

solution by embedding physical laws directly into the 

learning process. However, successful implementation 

requires accurate measurements of system frequency and 

the Rate of Change of Frequency (RoCoF), as well as 

reliable values for system parameters such as inertia 

constant and damping coefficient, which are essential for 

guiding the network's learning in a meaningful way. 

One of the primary obstacles hindering effective 

application of NNs for power system inertia estimation is 

scarcity of high-quality measurement data. Typically, input 

data required for training such models is obtained from 

Phasor Measurement Units (PMUs), which provide time-

synchronized measurements of key electrical quantities 

such as voltage, current, and frequency. However, in many 

power systems, especially in developing regions or at the 

distribution level, the number of installed PMUs may be 

limited, resulting in insufficient data to adequately train 

data-hungry neural network models. As previously noted, 

PINNs offer a potential workaround by incorporating 

physical knowledge into the learning process, thereby 

reducing reliance on large datasets. Nonetheless, this 

approach is not universally effective, and its performance 

can still be constrained in scenarios where critical 

measurements or system parameters are missing or 

unreliable. 

In this paper, an approach specifically designed to 

address challenges arising from limited availability of 

training data is proposed, which is a common constraint in 

many real-world power systems. Additionally, the 

proposed approach’s performance is tested against a well-

established method - RNNs, to provide a comprehensive 

evaluation. Key contributions of this work can be 

summarized as follows: 

• we introduce a novel approach aimed at mitigating 

effects of training data scarcity in ML applications for 

power system inertia estimation; 
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• we employ Contrastive Learning (CL), a self-

supervised learning technique, to extract meaningful 

representations and identify underlying patterns 

within training data; 

• we leverage embeddings learned through CL in a 

Ridge Regression (RR) framework, enabling 

development of a predictive model that estimates the 

inertia coefficient based on key power system 

measurements, including angular frequency, Rate of 

Change of Frequency (RoCoF), and node voltage. 

The rest of the paper is organized as follows: Section II 

provides a brief introduction to Contrastive Learning and 

TS2Vec framework. In Section III, we explain data pre-

processing and methodology for training the models 

proposed in the paper. Section IV presents a case study, 

and Section V concludes the paper. 

II. CONTRASTIVE LEARNING FOR TIME SERIES 

As outlined in [22], ML is traditionally categorized into 

four main types: Supervised Learning, Semi-Supervised 

Learning, Unsupervised Learning, and Reinforcement 

Learning. The primary distinction between Supervised and 

Unsupervised Learning lies in the presence of labeled data, 

i.e. Supervised Learning relies on labeled datasets to train 

models, whereas Unsupervised Learning operates without 

them. A notable limitation of Supervised Learning, 

particularly in engineering applications, is the need for 

domain experts to manually label large volumes of data. 

This process is often labor-intensive, prone to human error, 

and may not always be feasible, especially when dealing 

with complex systems or large-scale datasets. To overcome 

these challenges, another paradigm known as Self-

Supervised Learning has gained attention. This approach 

enables models to learn useful representations through 

pretext tasks that exploit inherent structures or correlations 

within input data, eliminating the need for manually 

assigned labels. As a result, Self-Supervised Learning can 

significantly reduce the burden of data annotation while 

still achieving high levels of performance in downstream 

tasks. 

Although the concepts of Self-Supervised and Semi-

Supervised Learning have been established for quite some 

time and are not considered new developments [23], they 

have recently gained renewed attention due to their 

applicability in modern Machine Learning challenges. 

Contrastive Learning, a subfield within Self-Supervised 

Learning, focuses on identifying and learning meaningful 

relationships within un-labelled data by distinguishing 

between similar and dissimilar data pairs. This technique 

has proven effective across a wide range of domains. In 

particular, CL has played a pivotal role in advancing 

generative AI, which has seen widespread adoption among 

the general public. Its most prominent applications are 

found in areas such as natural language processing, 

computer vision, audio signal processing, and beyond [22] 

[23], where learning from un-labelled data at scale has 

become increasingly valuable. 

Another domain where CL has shown significant 

promise, particularly relevant to this paper, is in the 

analysis of time series data. Time series play a crucial role 

in many real-world applications, including energy demand 

forecasting, financial market analysis, climate modeling, 

and virtually any context where observed quantities are 

strongly influenced by temporal dynamics. In this context, 

the authors of [24] introduced TS2Vec, a general-purpose 

framework specifically designed for learning robust 

representations from time series data using CL principles. 

At the heart of TS2Vec lies a hierarchical contrastive 

learning mechanism, which aims to extract meaningful 

features from subsequences of varying lengths and scales. 

This allows the model to learn contextual representations 

across different semantic levels, making it highly adaptable 

to diverse temporal patterns. Unlike traditional methods 

that may require handcrafted features or domain-specific 

preprocessing, TS2Vec is designed to be model-agnostic 

and data-efficient, requiring minimal supervision. 

According to its authors, the framework supports a broad 

range of downstream tasks, including time series 

classification, forecasting, and anomaly detection, making 

it a powerful tool for applications where labeled data is 

limited but temporal dependencies are rich and 

informative.  

In this study, TS2Vec framework is selected for 

implementation as a key component of the proposed 

analysis. Its flexibility and effectiveness in learning 

representations from time series data make it well-suited 

for the task of power system inertia estimation, where 

capturing temporal dependencies is essential. TS2Vec is 

available as an open-source Python module.. 

III. DATA PREPROCESSING & METHODOLOGY 

This section outlines the structure of the dataset as well 

as the methodology used to develop the models aligned 

with the objectives of this study. The dataset utilized 

originates from [15] and consists of synthetic data 

generated through dynamic simulations conducted using 

Simulink model of the IEEE 24-bus power system. These 

simulations were designed to emulate realistic transient 

behavior under varying system conditions. Detailed 

description of the simulation setup can be found in the 

original source. For reproducibility and further 

experimentation, link to the dataset is provided in the 

references [25]. 

For each PMU installed in the system, three 

measurements are recorded: angular frequency (ω), Rate of 

Change of Frequency (RoCoF, denoted as dω/dt), and 

voltage (υ). These variables constitute the features of the 

dataset. Each of the three measurements is treated as an 

individual feature per PMU, resulting in a total of 24 

features for the eight PMUs installed across the IEEE 24-

bus test system. This structured representation allows the 

model to capture spatially distributed dynamic behavior 

across the grid. The target variable, or label, for each data 

sample is the value M = 2∙H, where H represents the 

equivalent power system inertia constant. 

Each time sequence in the dataset spans a duration of 

one second, during which 200 samples are collected at a 

sampling rate of 200 Hz. Within a given sequence, the 

target value MMM remains constant; however, the feature 

values ω, dω/dt, and υ vary throughout the time window. 

This variability is introduced by applying a probing signal 

to the system, which induces small disturbances during the 

observation period. These disturbances are designed to 
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mimic realistic grid fluctuations and enable the model to 

learn meaningful dynamic patterns across time. A more 

detailed explanation of the signal injection process and 

simulation methodology is provided in [15]. 

The simulation procedure is carried out for 11 distinct 

values of M, ranging from 3 seconds to 8 seconds. To 

introduce variability and enrich the dataset, 100 different 

magnitudes of the probing signal are applied for each value 

of M, resulting in a total of 1,100 unique time sequences. 

Consequently, the complete dataset comprises of 1,100 

observations, where each observation includes 24 features 

and a corresponding label M. Each feature represents a 

time-dependent signal with sequence length of 200 

samples. Formally, if the number of observations is 

denoted as J, the sequence length as K, and the number of 

features as L, then the input features can be structured and 

fed into the learning algorithm as a three-dimensional 

array: 

 
J K LA     (1) 

Correspondingly, the target values M form a one-

dimensional array of length J, since each time sequence is 

associated with a single, constant inertia value. 

The overall training process of the proposed method is 

divided into two main stages: 

1) training a Contrastive Learning model using training 

dataset; 

2) training a Ridge Regression model using the feature 

representations obtained from CL stage. 

In the first stage, the training data - consisting solely of 

input features without labels - is fed into the CL algorithm. 

The objective at this stage is to learn meaningful 

representations by capturing intrinsic relationships within 

the data, such as temporal dependencies, multivariate 

interactions across features, and both local and global 

dynamics within each time sequence. The output of this 

stage is a compressed embedding for each time sequence, 

which encapsulates the learned structure of the data in a 

lower-dimensional space. In the second stage, these 

embeddings are paired with their corresponding labels M, 

and used to train the RR model. This regression model then 

learns to map the extracted representations to the system 

inertia values, and is subsequently evaluated on validation 

dataset to assess its performance. 

To evaluate effectiveness of the proposed CL/RR 

approach, its performance is compared against that of 

RNNs, which serve as baseline method. Both models are 

trained and tested on identical datasets to ensure fair 

comparison. To further assess robustness and 

generalization capability under varying data availability, 

multiple models are trained across different dataset sizes. 

This approach allows for a more comprehensive 

understanding of how each method performs under data-

rich and data-scarce conditions. Detailed information 

regarding the number of trained models, the specific 

dataset partitions used, and the corresponding performance 

metrics is provided in Section IV. 

Implementation of the proposed model is carried out in 

Python, utilizing TS2Vec framework for contrastive 

representation learning and Scikit-Learn library for 

training the RR model. For baseline comparison, the RNN 

model is developed using the PyTorch package. To ensure 

consistency and reproducibility across experiments, a fixed 

random seed value of 101010 is used during the training of 

both CL-based models and RNNs. Additionally, all feature 

values and corresponding labels are normalized to the 

range [0, 1] prior to training, in order to standardize input 

data and facilitate stable model convergence. 

IV. CASE STUDY 

As outlined in the previous section, the dataset employed 

in this study is derived from simulations conducted on 

Simulink model of the IEEE 24-bus power system. 

Measurements are collected from eight distinct PMUs 

placed throughout the network. Since each PMU provides 

three measurements, ω, dω/dt, and υ, the resulting dataset 

contains a total of 24 features per observation. In total, the 

dataset comprises of 1,100 time-sequences, each 

representing a one-second window sampled at a rate of 200 

Hz. This results in 200 time-steps per observation, 

capturing the system’s transient behavior in high temporal 

resolution. 

To investigate the impact of dataset size on model 

performance, experiments are conducted using varying 

proportions of the full dataset. Models are trained on 

subsets of the data, with dataset sizes expressed as 

percentages of the original 1,100 observations. This 

approach enables evaluation of how each model, both 

CL/RR and RNN, scales with data availability and how 

performance degrades or improves under limited data 

conditions. The specific dataset sizes used in the 

experiments are summarized in Table I. 

Furthermore, each of the dataset subsets listed in Table 

I is further divided into training and validation sets using 

an 80/20 split ratio. This ensures that the models are 

evaluated on previously unseen data, allowing for reliable 

assessment of their generalization capabilities across 

different dataset sizes. 

For each of the five dataset sizes presented in Table I, 10 

models are trained using both CL/RR approach and RNN-

based model. This results in 100 trained models in total. 

Performance of the models is assessed using four key 

evaluation metrics: Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Coefficient of Determination (R2), 

and validation accuracy, defined as the percentage of 

predictions falling within a ±0.5 s tolerance range of the 

true M value. 

TABLE I 

CASES FOR DIFFERENT DATASET SIZES 

 

Case # 1 2 3 4 5 

Size [%] 20 40 60 80 100 

Observations 220 440 660 880 1100 

 

Since each model configuration is trained 10 times, the 

median value of each metric across the 10 runs is reported 

to account for variability and provide a more representative 

measure of performance. The summarized results are 

presented in Table II. 
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TABLE II 

RESULT FROM VALIDATION OF MODELS 

 

Case Model MSE MAE R2 Accuracy [%] 

1 
RNN 0.919 0.812 -0.031 34.1 

CL/RR 0.1 0.244 0.888 88.6 

2 
RNN 0.749 0.737 0.338 30.7 

CL/RR 0.114 0.228 0.899 86.4 

3 
RNN 1.169 0.927 -0.192 26.5 

CL/RR 0.098 0.235 0.9 90.2 

4 
RNN 0.018 0.092 0.981 98.6 

CL/RR 0.068 0.174 0.93 92.1 

5 
RNN 0.027 0.112 0.976 97.7 

CL/RR 0.043 0.149 0.961 95.9 

 

The results presented in Table II demonstrate that the 

proposed CL/RR models outperform the RNN-based 

models in scenarios where the dataset size is limited. Even 

at 60% of the original dataset, RNN models exhibit poor 

performance, highlighting their sensitivity to data scarcity. 

To assess model stability, the Median Absolute Deviation 

(MAD) is calculated alongside the median value for each 

metric, based on the 10 training runs per case. The results 

show that most models exhibit minimal deviation from the 

median, indicating consistent performance. The only 

notable exception is RNN models trained on 80% of the 

dataset, which display slightly higher, but still relatively 

small variations. As these deviations are negligible and do 

not significantly alter the conclusions, they are not reported 

in Table II. Interestingly, in cases 4 and 5, where larger 

amounts of training data are available, RNN models begin 

to outperform CL/RR approach, suggesting that RNNs 

may be more effective when sufficient data is present. 

Effectiveness of the proposed methodology on smaller 

datasets is further supported by the visualization shown on 

Figure 1, which presents a t-SNE plot of learned 

embeddings. These embeddings are taken from three of the 

training runs of the CL model corresponding to cases 1, 2 

and 3 respectively.  

 
a) 

 
b) 

 
c) 

Fig. 1.  Embeddings obtained from CL. a) Case 1; b) 

Case 2; c) Case 3 

 

Despite the limited amount of training data, t-SNE 

visualization reveals that the model is capable of 

distinguishing meaningful structures within the data, as 

evidenced by the formation of distinct clusters. This 

clustering behavior indicates that the Contrastive Learning 

stage successfully captures underlying relationships in the 

time series, even under data-constrained conditions, further 

validating the model’s robustness. 

To further demonstrate, Figure 2 shows plots of 

predicted and real values of M from the validation of the 

same cases. 
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a) 

 
b) 

 
c) 

Fig. 2  True and predicted M values. a) Case 1; b) Case 

2; c) Case 3 

V. CONCLUSION 

This paper presents a methodology for addressing data 

scarcity in the context of power system inertia estimation. 

The proposed approach, which combines Contrastive 

Learning for representation extraction with Ridge 

Regression for model training, was evaluated against 

traditional Recurrent Neural Network models across 

various dataset sizes. 

The results demonstrate that CL/RR models outperform 

RNNs in scenarios with limited data availability, 

successfully capturing meaningful patterns even when 

trained on as little as 20% of the original dataset. However, 

as the amount of available data increases, RNN models 

begin to show marginally better performance, reflecting 

their strength in data-rich environments. 

These findings suggest that the proposed CL/RR 

methodology may hold potential for practical deployment, 

particularly in real-world settings where measurement data 

is scarce and analytical estimation of equivalent power 

system inertia is challenging. By leveraging Self-

Supervised Learning to uncover temporal and multivariate 

relationships, this approach offers a promising alternative 

for accurate inertia estimation in modern, inverter-

dominated grids. 

DECLARATION OF GENERATIVE AI AND AI-ASSISTED 

TECHNOLOGIES IN THE WRITING PROCESS 

During preparation of this work, the authors used 

ChatGPT to improve language and readability of work 

presented, to a limited extent. After using this tool, the 

authors reviewed and edited the content as needed and take 

full responsibility for the publication’s content. 
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