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Abstract: This paper explores an interoperability scenario between wireless powered transfer and federated learning (FL) 

technologies. In this scenario, the base station does not only coordinate training of the global FL model, but it also charges energy 

harvesting (EH) clients, which are responsible for training the local models. These EH clients are equipped with rechargeable batteries, 

enabling them to perform local processing and energy harvesting concurrently. We propose an efficient resource allocation scheme 

that optimizes both computing and communication parameters to minimize training latency. Simulation results show a significant 

latency reduction compared to state-of-the-art FL system that operates with non-overlapping local processing and energy harvesting 

phases. 
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ИНТЕРОПЕРАБИЛНОСТ ПОМЕЃУ ФЕДЕРАТИВНО УЧЕЊЕ И 

БЕЗЖИЧНО НАПОЈУВАНИ КОМУНИКАЦИИ: МИНИМИЗИРАЊЕ НА 

ВРЕМЕТО НА ТРЕНИРАЊЕ 

Апстракт: Oвој труд истражува сценарио на интероперабилност помеѓу технологиите за безжичен пренос на енергија и за 

федерaтивно учење. Во ова сценарио, базната станица не го координира само процесот на тренирање на глобалниот модел 

добиен со федеративно учење, туку истовремено ги полни со енергија и клиентите што жнеат енергија, кои пак се одговорни 

за тренирање на нивните локални модели. Овие клиенти што жнеат енергија се опремени со батерии кои може да се 

надополнуваат што им дозволува истовремено локално да процесираат и да жнеат енергија. Во трудот предлагаме ефикасно 

доделување на ресурси што ги оптимизира процесирачките и комуникациските параметри за да се минимизира времето 

потребно за тренирање на моделот. Симулациските резултати покажуваат значајно намалување на времето потребно за 

тренирање во споредба со врвните системи за федеративно учење кои работат во режим без преклопување помеѓу фазите на 

локално процесирање и жетва на енергија. 

Клучни зборови: мрежи со безжичен пренос на енергија, доделување ресурси, федеративно учење 

I. INTRODUCTION

EXT-generation communication systems are 

expected to be the primary vehicles for distributed 

machine learning, such as federated learning (FL). 

In turn, as stipulated in the IEEE 3652.1 standard [1], FL 

will contribute to solving data privacy and information 

security concerns relevant to these communication 

systems. The FL concept is particularly useful for the 

Internet of Things (IoT) ecosystem, whose number of 

devices and traffic volumes have grown exponentially in 

recent years, where FL offers opportunities to improve 

their limited computing capabilities and privacy guarantees 

[2]. Additionally, IoT devices have limited power supply 

despite the requirements for their energy sustainability 

over extended periods of time. In this regard, feasible 

technologies to facilitate energy sustainability of IoT are 

wireless power transfer (WPT) and radio frequency (RF) 

energy harvesting (EH) [3]. Therefore, the fusion of FL and 

wireless power communications appears as the natural 

mixture of technologies for the design of energy self-

sustainable intelligent systems and services for the next-

generation communications. 

To present, several papers available in the literature 
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have studied wireless powered FL systems [4]-[6]. Paper 

[4] assumes that EH clients (EHCs) first harvest energy and

then perform local computation and data offloading to the

FL parameter server. Papers [5] and [6] propose resource

allocation and scheduling schemes for wireless powered

FL systems by allowing simultaneous energy harvesting

and local model processing at EHCs. However, they use

separate dedicated channels for communications and

energy harvesting and do not offer closed-form solutions

for proposed resource allocations, which makes their

practical real-time implementation difficult. Furthermore,

the algorithms proposed in [5] and [6] rely on alternating

optimization of resource allocation subproblems, which are

both suboptimal and computationally intensive.

An important interoperability issue between WPT and 

FL is whether the EH process runs concurrently with the 

FL process to enhance efficiency [7] [8]. While [4] does 

not assume concurrent processes, papers [5] and [6] 

consider parallel execution, with WPT occurring over a 

dedicated frequency channel separate from the 

communication channel. In scenarios where the local 

computation load at the clients is substantial, such as 

during FL training, enabling simultaneous energy 

harvesting and local computation can result in significant 

improvements in overall system performance. In this 

paper, we extend [4] by assuming that the clients are 

equipped with rechargeable batteries and thus can 

simultaneously harvest energy and carry out local 

processing, which changes the energy management model 

and the optimal resource allocation. The existence of 

rechargeable batteries at EHCs is already implemented in 

some of the off-the-shelf energy harvesting devices [9], 

making the analyzed system closer to practical 

implementation. Additionally, contrary to [5] and [6], we 

assume that communication and energy transmission are 

carried out over the same channel, using the time division 

principle that allows for a more compact design with a 

single base station and single communication channel. 

Thus, we design and optimize a wireless powered system 

for FL training where local processing and energy 

harvesting occur simultaneously over a common 

communication bandwidth. We formulate a resource 

allocation problem to minimize delay in a time-division 

multiple access (TDMA)-based wireless powered 

communication network (WPCN) used for FL training. 

Our system design is optimized using an exact analytical 

solution for resource allocation parameters, ensuring lower 

computational complexity and reduced latency compared 

to state-of-the-art schemes. 

TABLE I 

LIST OF NOTATIONS 

Notation Description 

K Number of EHC 

LC
 Duration of joint local training/harvesting 

phase and communication phase 

k
t Duration of thk  communications subphase 

k
w , w Local model parameters/Global model 

parameters 

k
D Number of samples in local dataset at thk

EHC 

k
L CPU cycles/sample to process single data 

sample at thk EHC 

k
f CPU cycles per second at thk EHC 

k
I Number of iterations to reach some local 

accuracy within each TR for thk EHC 

k
a Total number of CPU cycles needed by thk

EHC to process single local model update 

0
a Total number of CPU cycles needed by any 

EHC to process single local model update 

when all users have the same 
k
I , 

k
L and 

k
D

EH

k
E Amount of energy stored by thk  EHC during 

the joint phase 

0
P Transmit power for BS RF energy broadcasts 

 Energy conversion efficiency of the EH 

circuit 

k
h Gain of the wireless channel between BS and 

thk  EHC 

LC

k
E Energy required for thk  EHC to train its local 

model during a single TR 

 Energy efficiency coefficient 

0
b Size in bits of local model parameters 

transmitted from thk  EHC to BS 

k
p Transmit power of thk  EHC 

B Communications bandwidth 

0
N Thermal noise power spectral density 

WC

k
E Energy consumed by thk EHC for 

transmission to BS 

max
f Maximum CPU frequency allowed at each 

EHC 

II. SYSTEM MODEL

We consider FL training process realized over WPCN, 

consisting of K  EHCs, each executing its local FL model, 

and single base station (BS), acting as the FL parameter 

server. We assume each node is equipped with single 

antenna and operate in half-duplex mode. In addition, each 

EHC is equipped with EH circuit comprised of rectifying 

antenna and rechargeable battery.  

As per Figure 1, the FL training time is divided into 

training rounds (TRs), where each TR consists of two 

phases: joint local training/harvesting phase and 

communication phase. During the joint phase, with 

duration 
LC

 , BS emits RF energy, which is collected by 

EHC in channel-dependent amount. The communications 

phase is subdivided into K  subphases based upon TDMA, 

where each subphase is dedicated to information 

transmission from single EHC. Specifically, during thk  

communications subphase, with duration 
k
t , thk EHC (

1 k K  ) offloads to BS its local model parameters, 
k

w

. At the end of the communication phase, BS updates the 

global model using local model parameters from all EHCs, 
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and then sends these parameters back to EHCs to update 

their local FL models. The global model update in each TR 

is realized according to specific FL algorithm. When the 

FedAvg algorithm [10] is used, assuming equal size of 

local datasets from all EHCs, global model updates at the 

end of given TR are calculated according to the following 

equation: 

1

1
.

K

k

kK =

= w w (1) 

The time needed by BS to update the global model and 

to broadcast the global model parameters to EHC is 

neglected due to substantial bandwidth and power 

available to BS. This procedure is repeated over multiple 

TR iterations until global loss function convergences at its 

minimum with some prescribed accuracy.  

LC
1t 2t Kt...

Joint local training/

harvesting phase

Communication 

phase for EHC 1

Communication 

phase for EHC 2

Communication phase 

for EHC K

Communication phase for all EHCs

Fig. 1.  Structure of single training round 

A. Joint local training and energy harvesting phase

We assume that each EHC has a battery with certain

initial energy stored so that each EHC can perform local 

processing while simultaneously harvesting energy. Let us 

assume that thk  EHC has i.i.d. local dataset 
k

 with 
k
D

number of samples. The computational load to process 

single data sample is equal to 
k
L CPU cycles/sample, and 

CPU frequency of thk  EHC is equal to 
k
f CPU 

cycles/second. If the number of iterations to reach some 

local accuracy within each TR is equal to 
k
I , then the total 

number of CPU cycles needed by thk EHC to process

single local model update is given by 
k k k k
a L D I= . 

Without loss of generality, the values of 
k
L , 

k
D and 

k
I are 

assumed equal for all EHCs (
0k

L L= , 
0k

D D= , and 

0k
I I= ), which leads to 

0 0 0 0
,

k
a a L D I k= =  . For 

analytical tractability, we assume the local training phases 

of all EHCs are completed at the same time instant. In this 

case, the duration of the joint phase is set as equal to: 

 0

1
max .LC
k K

k

a

f


 

 
=  

 
(2) 

Now, let us denote the gain of the wireless channel 

between BS and thk  EHC (1 k K  ) by 
k
h . This 

channel is assumed to be reciprocal. While the local model 

update process is taking place at EHCs, BS broadcasts RF 

energy at fixed transmit power 
0
P that is harvested by all

EHCs. Assuming that EH circuit at EHC complies with 

linear EH model, the amount of energy stored by thk  EHC 

during the joint phase is determined by: 

0 ,EH

k LC kE P h = (3) 

 where (0 1)    denotes the energy conversion 

efficiency of the EH circuit. On the other hand, the energy 

required for thk  EHC to train its local model during single 

TR is determined by:  
2

0 ,LC

k kE a f= (4) 

where   is an energy efficiency coefficient that depends 

on EHC's CPU architecture [11] [12]. 

B. Communication phase

During thk  subphase of the communication phase, thk

EHC transmits to BS its local model parameters. Let us 

denote the size in bits of the local model parameters 

transmitted from thk  EHC to BS by 
0
b . The capacity of 

the wireless channel between thk EHC and BS should be 

high enough to sustain the reliable transmission of 
0
b bits, 

which yields the following condition:  

2 0

0

log 1 , ,k k
k

p h
t B b k

BN

 
+   

 
(5) 

where 
k
p is the transmit power of thk EHC, B is the 

communications bandwidth, and 
0
N is the power spectral 

density of the thermal noise at the receiver. In this case, 

energy consumed by thk  EHC for transmission to BS is 

equal to 
WC

k k k
E p t= . Therefore, the total amount of energy 

consumed during TR should be no higher than the total 

amount of energy harvested, i.e., 
WC LC EH

k k k
E E E+  . 

III. LATENCY MINIMIZATION

We aim to minimize FL training duration in the 

considered WPCN by optimally allocating communication 

parameters (
LC

 , 
k
t , 

k
p ) and computation parameters (

k
f ).

Given that FL training duration is defined as: 

1

,
K

LC k

k

TR t
=

= + (6) 

we address the following resource allocation problem: 

, , ,
1

Minimize
LC k k k

K

LC k
f t p

k

t



=

+

subject to:
2

0 0

2 0

0

0

1: ,

2 : log 1 ,

3: ,

4 : ,

k k k LC k

k k
k

k max

LC

k

C p t a f P h k

p h
C t B b k

BN

C f f k

a
C k

f

  



+  

 
+   

 

 

 

(7) 

In (7), constraint 1C  implies that energy harvested by 

EHC during TR is completely spent for local training and 

data transmission in the same TR. Constraint 2C  refers to 

the capacity of the uplink channel, whereas 3C  applies 
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maximum CPU frequency constraint on each EHC, 
max
f . 

Constraint 4C  imposes an upper bound on duration of 

local training phases of all EHCs, thus satisfying (2). 

The solution of (7) is given by the following theorem. 

Theorem 1: The optimal transmit power of thk  EHC is 

given by:  

*
1 0

1

( )* *0
1 0 1 *

1 0

1
1 ( )

( )
kg f

k k

k k

N B
p g f W e

h g f

−

−

  
  = − − −

    

 (8) 

where ( )
1

W z
−

is second branch of the Lambert-W

function, which is real-valued for 1/ 0e z−   . The 

auxiliary function 
*

1 0
( )

k
g f  is defined by: 

( )* 3

0 0 0*

1 0 *

0 0 0

( )
( ) ,

log(2)

k k

k

a h P h f
g f

b N f

 −
= (9) 

where 
*

0
f is equal for all EHCs and given by:  

* *

* *

0 *

,
, .

,

c c max

k

max c max

f f f
f f k

f f f

 
= = 


(10) 

In (10), the value of 
*

c
f  is found as the solution of the 

following transcendental equation: 

  
0 * * 3 *

1 12 2

1 1
1,

( ) 2 ( ) ( )

K K
k

k kk c c k c

h
P

g f f g f


= =

+ =  (11) 

where the auxiliary function 
*

2
( )

k c
g f  is defined by: 

*
* * *0

2

0

( ) log 1 ,k k
k c k k

k

N B h p
g f p p

h N B

   
= + + −   
   

 (12) 

where 
*

k
p is a function of 

*

c
f according to (8). The optimal

duration of the joint local training/harvesting phase is given 

by:  

* 0

*

0

,LC

a

f
 = (13) 

and the optimal transmission duration of thk  EHC equals: 

* 0

*

2

0

, .

log 1

k

k k

b
t k

p h
B

N B

= 
 
+ 

 

(14) 

Proof: Please refer to Appendix A. 

IV. NUMERICAL RESULTS

To study the performance of the proposed resource 

allocation scheme, we consider WPCN with 10K =  EHCs 

used for FL training. EHCs are distributed at distances 

2
k
d k=   meters around BS, where k  is the EHC’s 

index. The channel between BS and thk  EHC is exposed 

only to deterministic fading with a path loss exponent equal 

to 3, i.e., 
3 3

10
k k
h d

− −
= . The thermal noise power spectral 

density equals 
0

160N = − dBm/Hz. The EHC’s 

computational load equals 
0

1000L = CPU cycles/sample, 

the computation efficiency 
28

10
−

= , and the number of 

local iterations is set to 
0

3I = , yielding 
3

0
3 10a

−
=  . We 

also set 1B =  MHz and 
0

1b = Mbit. The size of the 

EHC’s local dataset equals 
0

1000D = samples. On the

following figures, the proposed scheme is denoted as 

“Parallel local processing and harvesting”. As benchmark,

we consider a comparable resource allocation scheme 

developed in [4], where local processing and EH phases do 

not overlap. The same system parameter settings as 

described above are also applied to the benchmark scheme, 

which is denoted as “Separate phases”. 

Fig. 2.  Training round duration vs. BS transmit power for 

1
max
f = GHz.

Fig. 3.  Training round duration vs. 
max
f  for 

0
P 10= W.

Figure 2 depicts the training round duration versus BS 

transmit power. The latency of the proposed scheme is 

consistently below that of the benchmark scheme, because 

the benchmark scheme spends extra time for local 

processing. Figure 3 shows the relationship between the 

training round duration and the maximum frequency of 

energy harvesting clients (EHCs). When 
max
f  is low, the 

benchmark scheme experiences increased latency - a trend 

not observed with the proposed algorithm. In the 

benchmark scheme, the maximum frequency in this range 

becomes a bottleneck, leading to the optimal frequency 
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being kept at its upper limit. Due to separation of local 

training and EH phases, the low optimal frequency 

significantly prolongs the local training phase, increasing 

TR duration. In contrast, the proposed algorithm allows EH 

and local processing to occur concurrently, enabling the 

local processing to run at frequency lower than the 

maximum without extending TR duration.  

Fig. 4.  Training round duration vs. B  for 
0

10P =  W and 

1
max
f = GHz.

Figure 4 illustrates the relationship between training 

round duration and available bandwidth. In the proposed 

scheme, as bandwidth increases, transmission time 

decreases, leading to reduced training duration. In contrast, 

the local processing period in the benchmark scheme is 

only slightly impacted by the increased bandwidth. The 

performance gap between the proposed and benchmark 

schemes increases with increasing bandwidth. 

Fig. 5.  Training round duration vs. K  for 
0

10P = W and 

1
max
f = GHz.

To illustrate how the proposed method scales up with 

increasing number of clients and more complex networks, 

particularly in large-scale IoT deployments, Figure 5 

shows the training round duration versus the number of 

EHCs. For this figure, EHCs were placed at equal distance 

between 2 and 20 m. The gain obtained using parallel local 

processing and energy harvesting is almost constant for the 

whole range of K , meaning that it is most important when 

the number of EHCs is small. Namely, as K increases, the 

duration of the transmission phase increases and becomes 

dominant, hence the reduction in training round duration 

due to parallel processing becomes less important. 

V. CONCLUSION

This paper proposes a resource allocation scheme aimed 

at minimizing FL training duration over wireless powered 

communication system. To reduce latency, local model 

training in each round is performed concurrently with the 

network’s energy broadcasting and harvesting process. The 

resource allocation problem is analytically addressed, 

enabling efficient online implementation of the proposed 

scheme. The simulation results show that this approach 

significantly reduces training latency compared to systems 

with non-overlapping energy harvesting and local 

processing phases. The performance gains are particularly 

notable when client maximum CPU frequencies are lower, 

emphasizing the need for rechargeable batteries in energy-

harvesting devices. In future work, we will extend our 

study to account for the impact of random fading in the 

wireless channel. 

APPENDIX A 

PROOF OF THEOREM 

The proof follows similar derivation steps as in [4]. We 

first use the substitution 
k t k
e p t= to transform (7) into a 

convex optimization problem, where the solution of the 

Lagrangian dual problem is the desired optimal solution. 

The Lagrangian of the transformed problem is expressed 

as:  

2

0 0

1 1

0

1 0

0

1 1

log 1

) ,(

K K

LC k k k k LC k

k i

K
k k

k k

k k

K K

k k max k LC

k k k

t e a f P h

e h
c t

t N B

a
f f

f

    



  

= =

=

= =

 
 = + + + −   

 

  
+ − +  

  

 
+ − + − 

 

 



 

  (15) 

where 
k
 , 

k
 , 

k
  and 

k
  are non-negative Lagrangian 

multipliers associated with 1, 2, 3C C C and 4C  in (7), 

respectively. Note, 
0 0

log(2) /c b B= . Next, we set the 

derivatives of  with respect to , ,
LC k k
f t  and 

k
e  to zero, 

yielding:  

0

1 1

1 0
K K

k k k

k kLC

Ph  
 = =


= + − =


  (16) 

0
0 2

2 0k k k k

k k

a
a f

f f
   


= + − =


(17) 

0 0

log 1 0k k k k
k

k k k k k

e h e h

t t N B t N B e h


  
= + − =  

 +  

(18)
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0.k k k k
k k

k k k

t N e h

e t h
 

+
= − =


(19) 

The multipliers 
k
 , 

k
  and 

k
 are strictly positive k

, and thus, each of the constraints 1C , 2C  and 4C  in (7) 

must be satisfied with strict equality. 

A. Case 1: 0,
k

k = 

In this case, 
0

,
k max
f f f k=   . Combining 1C , 2C  

and 4C , and using the substitution 
k k k
e p t= we obtain: 

20 0
0 0 0

0

.

log 1

k
k

k k

k

c p a
P h a f
fp h

N

 = −
 
+ 

 

(20) 

Note, (20) has a general form ( )log 1
k k
p b ap=  + , 

where 1ab  , and can be solved in closed form as 

( )1 1 1

1
( ) exp(( ) )

k
p a b W ab ab

− − −

−
= − −  −  , where 

1
( )W

−


denotes the second branch of the Lambert-W  function. 

Therefore, the closed form solution of (20) is given by (8). 

The optimal value of 
LC

 is obtained from 4C , yielding 

(13), whereas the optimal value of 
k
t is obtained from 2C

, yielding (14). Next, we insert (19) into (18), which yields: 

*

2

1
,

( )
k

k cg f
 = (21) 

where 
*

2
( )

k c
g f is given in (12). We obtain (11) by 

inserting (17) and (21) in (16). 

B. Case 1: 0,
k

k  

In this case, 
0

,
k max
f f f k= = 
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